Genome sequence of a novel victorivirus identified in the phytopathogenic fungus Alternaria arborescens

Genome sequence of a novel victorivirus identified in the phytopathogenic fungus Alternaria... Strains of the phytopathogenic fungus Alternaria spp. have been found to contain a variety of double-stranded RNA (dsRNA) elements indicative of mycovirus infection. Here, we report the molecular characterization of a novel dsRNA mycovirus, Alternaria arborescens victorivirus 1 (AaVV1), from A. arborescens , the tomato pathotype of A. alternata . Using next-generation sequencing of dsRNA purified from an A. arborescens strain from the United States of America, we found that the AaVV1 genome is 5203 bp in length and contains two open reading frames (ORF1 and 2) that overlap at the tetranucleotide AUGA. Proteins encoded by ORF1 and ORF2 showed significant similarities to the coat protein (CP) and the RNA-dependent RNA polymerase (RdRp), respectively, of dsRNA mycoviruses of the genus Victorivirus . Pairwise comparisons and phylogenetic analysis of the deduced amino acid sequences of both CP and RdRp indicated that AaVV1 is a member of a distinct species of the genus Victorivirus in the family Totiviridae . http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Genome sequence of a novel victorivirus identified in the phytopathogenic fungus Alternaria arborescens

Loading next page...
 
/lp/springer_journal/genome-sequence-of-a-novel-victorivirus-identified-in-the-P5UwdbsjDS
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-016-2796-9
Publisher site
See Article on Publisher Site

Abstract

Strains of the phytopathogenic fungus Alternaria spp. have been found to contain a variety of double-stranded RNA (dsRNA) elements indicative of mycovirus infection. Here, we report the molecular characterization of a novel dsRNA mycovirus, Alternaria arborescens victorivirus 1 (AaVV1), from A. arborescens , the tomato pathotype of A. alternata . Using next-generation sequencing of dsRNA purified from an A. arborescens strain from the United States of America, we found that the AaVV1 genome is 5203 bp in length and contains two open reading frames (ORF1 and 2) that overlap at the tetranucleotide AUGA. Proteins encoded by ORF1 and ORF2 showed significant similarities to the coat protein (CP) and the RNA-dependent RNA polymerase (RdRp), respectively, of dsRNA mycoviruses of the genus Victorivirus . Pairwise comparisons and phylogenetic analysis of the deduced amino acid sequences of both CP and RdRp indicated that AaVV1 is a member of a distinct species of the genus Victorivirus in the family Totiviridae .

Journal

Archives of VirologySpringer Journals

Published: Jun 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off