Genetic structure of the Russian populations of Pyrenophora tritici-repentis, determined by using microsatellite markers

Genetic structure of the Russian populations of Pyrenophora tritici-repentis, determined by using... The population genetic structure of plant pathogenic fungus Pyrenophora tritici-repentis was examined using microsatellite (SSR) markers. According to the geographical origin of the pathogen populations, they were designated as North Caucasian (S, 33 isolates), northwest (Nw, 39), and Omsk (Om, 43). The populations were analyzed at the nine most polymorphic SSR loci, at which 75 alleles were identified. To characterize the genetic variation within and between populations, the AMOVA algorithm as implemented in the Arlequin v. 3.5 software program was used. The number of alleles per locus ranged from 5 to 12 and their sizes varied within the range from 180 to 400 bp. The mean gene diversity at SSR loci was high for all populations (H = 0.58–0.75). The populations were considerably different in the frequencies of individual alleles of the SSR loci. Most isolates in the populations were represented by unique haplotypes. The within-population variation of the isolates at molecular markers was 86.4%; among the populations, 13.6%. Substantial interpopulation differences were found between the Om and S (F st = 0.16) and between the Om and Nw (F st = 0.20) populations, whereas between the S and Nw populations, these differences were small (F st = 0.05). Thus, it was demonstrated that the population of P. tritici-repentis from Omsk oblast had the independent status of the geographical population; northwest and North Caucasian populations differed in the allelic diversity of SSR loci, and despite the low F st value (0.05), they also belonged to independent geographical populations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Genetic structure of the Russian populations of Pyrenophora tritici-repentis, determined by using microsatellite markers

Loading next page...
 
/lp/springer_journal/genetic-structure-of-the-russian-populations-of-pyrenophora-tritici-unJkSFhOiv
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795416080093
Publisher site
See Article on Publisher Site

Abstract

The population genetic structure of plant pathogenic fungus Pyrenophora tritici-repentis was examined using microsatellite (SSR) markers. According to the geographical origin of the pathogen populations, they were designated as North Caucasian (S, 33 isolates), northwest (Nw, 39), and Omsk (Om, 43). The populations were analyzed at the nine most polymorphic SSR loci, at which 75 alleles were identified. To characterize the genetic variation within and between populations, the AMOVA algorithm as implemented in the Arlequin v. 3.5 software program was used. The number of alleles per locus ranged from 5 to 12 and their sizes varied within the range from 180 to 400 bp. The mean gene diversity at SSR loci was high for all populations (H = 0.58–0.75). The populations were considerably different in the frequencies of individual alleles of the SSR loci. Most isolates in the populations were represented by unique haplotypes. The within-population variation of the isolates at molecular markers was 86.4%; among the populations, 13.6%. Substantial interpopulation differences were found between the Om and S (F st = 0.16) and between the Om and Nw (F st = 0.20) populations, whereas between the S and Nw populations, these differences were small (F st = 0.05). Thus, it was demonstrated that the population of P. tritici-repentis from Omsk oblast had the independent status of the geographical population; northwest and North Caucasian populations differed in the allelic diversity of SSR loci, and despite the low F st value (0.05), they also belonged to independent geographical populations.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Sep 10, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off