Genetic resources of nodule bacteria

Genetic resources of nodule bacteria Nodule bacteria (rhizobia) form highly specific symbiosis with leguminous plants. The efficiency of accumulation of biological nitrogen depends on molecular-genetic interaction between the host plant and rhizobia. Genetic characteristics of microsymbiotic strains are crucial in developing highly productive and stress-resistant symbiotic pairs: rhizobium strain-host plant cultivar (species). The present review considers the issue of studying genetic resources of nodule bacteria to identify genes and their blocks, responsible for the ability of rhizobia to form highly effective symbiosis in various agroecological conditions. The main approaches to investigate of intraspecific and interspecific genetic and genomic diversity of nodule bacteria are considered, from MLEE analysis to the recent methods of genomic DNA analysis using biochips. The data are presented showing that gene centers of host plants are centers of genetic diversification of nodule bacteria, because the intraspecific polymorphism of genetic markers of the core and the accessory rhizobial genomes is extremely high in them. Genotypic features of trapped and nodule subpopulations of alfalfa nodule bacteria are discussed. A survey of literature showed that the genomes of natural strains in alfalfa gene centers exhibit significant differences in genes involved in control of metabolism, replication, recombination, and the formation of defense response (hsd genes). Natural populations of rhizobia are regarded as a huge gene pool serving as a source of evolutionary innovations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Genetic resources of nodule bacteria

Loading next page...
 
/lp/springer_journal/genetic-resources-of-nodule-bacteria-HA0eBMZrwN
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795409090014
Publisher site
See Article on Publisher Site

Abstract

Nodule bacteria (rhizobia) form highly specific symbiosis with leguminous plants. The efficiency of accumulation of biological nitrogen depends on molecular-genetic interaction between the host plant and rhizobia. Genetic characteristics of microsymbiotic strains are crucial in developing highly productive and stress-resistant symbiotic pairs: rhizobium strain-host plant cultivar (species). The present review considers the issue of studying genetic resources of nodule bacteria to identify genes and their blocks, responsible for the ability of rhizobia to form highly effective symbiosis in various agroecological conditions. The main approaches to investigate of intraspecific and interspecific genetic and genomic diversity of nodule bacteria are considered, from MLEE analysis to the recent methods of genomic DNA analysis using biochips. The data are presented showing that gene centers of host plants are centers of genetic diversification of nodule bacteria, because the intraspecific polymorphism of genetic markers of the core and the accessory rhizobial genomes is extremely high in them. Genotypic features of trapped and nodule subpopulations of alfalfa nodule bacteria are discussed. A survey of literature showed that the genomes of natural strains in alfalfa gene centers exhibit significant differences in genes involved in control of metabolism, replication, recombination, and the formation of defense response (hsd genes). Natural populations of rhizobia are regarded as a huge gene pool serving as a source of evolutionary innovations.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Sep 18, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off