Genetic Regulation of Pathogenicity and Virulence Factors in Bacteria Erwinia carotovora subsp. atroseptica: Phenotypic Characteristic of Bacteria Mutant for the kduD Gene

Genetic Regulation of Pathogenicity and Virulence Factors in Bacteria Erwinia carotovora subsp.... In contrast to the closely related bacteria Erwinia chrysanthemi, the kDu mutant of Erwinia carotovora subsp. atroseptica produce lower levels of main pathogenicity and virulence factors (pectate lyases, cellulases, and proteases) in the presence of pectins. This effect was shown to be connected with the accumulation of the intermediate product of intracellular degradation of these substances, 2,5-diketo-3-deoxygluconate (DK2). The presence of DK2 in the culture broth of mutant bacteria, connected to its export in the environment, was established. The production of pectate lyases, cellulases, and proteases is repressed by DK2 only at its high concentrations in the cultivation medium, whereas low concentrations of DK2 induce the production of virulence factors. Genes involved in the intracellular catabolism of pectin substances and induced by both low and high DK2 concentrations in the cultivation medium are not repressed by this metabolite. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Genetic Regulation of Pathogenicity and Virulence Factors in Bacteria Erwinia carotovora subsp. atroseptica: Phenotypic Characteristic of Bacteria Mutant for the kduD Gene

Loading next page...
 
/lp/springer_journal/genetic-regulation-of-pathogenicity-and-virulence-factors-in-bacteria-oXZZ8ogatD
Publisher
Springer Journals
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/B:RUGE.0000041375.59079.aa
Publisher site
See Article on Publisher Site

Abstract

In contrast to the closely related bacteria Erwinia chrysanthemi, the kDu mutant of Erwinia carotovora subsp. atroseptica produce lower levels of main pathogenicity and virulence factors (pectate lyases, cellulases, and proteases) in the presence of pectins. This effect was shown to be connected with the accumulation of the intermediate product of intracellular degradation of these substances, 2,5-diketo-3-deoxygluconate (DK2). The presence of DK2 in the culture broth of mutant bacteria, connected to its export in the environment, was established. The production of pectate lyases, cellulases, and proteases is repressed by DK2 only at its high concentrations in the cultivation medium, whereas low concentrations of DK2 induce the production of virulence factors. Genes involved in the intracellular catabolism of pectin substances and induced by both low and high DK2 concentrations in the cultivation medium are not repressed by this metabolite.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Dec 28, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off