Genetic potential of local endemic forms of the pea (Pisum sativum L.) on the basis of nitrogen fixation and productivity

Genetic potential of local endemic forms of the pea (Pisum sativum L.) on the basis of nitrogen... Morphological and symbiotic traits were studied in local endemic forms of the pea originating from Egypt, Syria, Afghanistan, and Palestine. A number of endemic forms exceeded the regionalized Druzhnaya cultivar of the fodder pea in productivity of the seeds in field and greenhouse experiments. In order to improve nodulation and nitrogen fixation, endemic forms were crossed with the supernodulating K301 mutant (marked by the nod4 gene). Recurrent selection of lines up to F5,6 generations was conducted with an estimation of productivity, nodulation, and nitrogen fixation. The most promising recurrent lines with a high productivity, active nodulation, and high nitrogen fixation were obtained during the crossing of endemic forms with the recurrent line marked by the nod4 gene. The line was previously created during the crossing between the Druzhnaya cultivar and the supernodulating K301 mutant marked by the nod4 gene. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Genetic potential of local endemic forms of the pea (Pisum sativum L.) on the basis of nitrogen fixation and productivity

Loading next page...
 
/lp/springer_journal/genetic-potential-of-local-endemic-forms-of-the-pea-pisum-sativum-l-on-Vo7q0yGo0L
Publisher
Springer Journals
Copyright
Copyright © 2014 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795414010116
Publisher site
See Article on Publisher Site

Abstract

Morphological and symbiotic traits were studied in local endemic forms of the pea originating from Egypt, Syria, Afghanistan, and Palestine. A number of endemic forms exceeded the regionalized Druzhnaya cultivar of the fodder pea in productivity of the seeds in field and greenhouse experiments. In order to improve nodulation and nitrogen fixation, endemic forms were crossed with the supernodulating K301 mutant (marked by the nod4 gene). Recurrent selection of lines up to F5,6 generations was conducted with an estimation of productivity, nodulation, and nitrogen fixation. The most promising recurrent lines with a high productivity, active nodulation, and high nitrogen fixation were obtained during the crossing of endemic forms with the recurrent line marked by the nod4 gene. The line was previously created during the crossing between the Druzhnaya cultivar and the supernodulating K301 mutant marked by the nod4 gene.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Feb 6, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off