Genetic modifier of mitochondrial superoxide dismutase-deficient mice delays heart failure and prolongs survival

Genetic modifier of mitochondrial superoxide dismutase-deficient mice delays heart failure and... Mn superoxide dismutase (MnSOD)-deficient mice (Sod2−/−) suffer from mitochondrial damage and have various survival times and phenotypic presentations that are dependent on the genetic background of the mutant mice. The mitochondrial NADPH transhydrogenase (NNT) was identified as a putative genetic modifier based on a genome-wide quantitative trait association study on the molecular defect of the protein in more severely affected Sod2−/− mice and on the biological function of NNT. Hence, Sod2−/− mice on the C57BL/6J (B6J) background have the shortest survival time, and the mice are homozygous for the truncated Nnt allele (Nnt T ). On the other hand, genetic backgrounds that support longer survival of Sod2−/− mice all have at least one normal copy of Nnt (Nnt W ). To confirm the role of NNT in the phenotypic modification of Sod2−/− mice, we introduced a normal copy of Nnt allele from a C57BL/6 substrain into B6J-Sod2−/− mice and analyzed survival time, cardiac functions, and histopathology of the heart. The study results show that the presence of a normal Nnt allele preserves cardiac function, delays the onset of heart failure, and extends the survival of B6J-Sod2−/− mice to the end of gestation. Postnatal survival, however, is not supported. Consequently, the majority of B6J-Sod2−/− mice died within a few hours after birth and only a few survived for 5–6 days. The study results suggest that NNT is important for normal development and function of fetal hearts and that there may be other genetic modifier(s) important for postnatal survival of Sod2−/− mice. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Genetic modifier of mitochondrial superoxide dismutase-deficient mice delays heart failure and prolongs survival

Loading next page...
 
/lp/springer_journal/genetic-modifier-of-mitochondrial-superoxide-dismutase-deficient-mice-Y8o9fi5XHe
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC (outside the USA)
Subject
Life Sciences; Zoology ; Anatomy; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-010-9299-x
Publisher site
See Article on Publisher Site

Abstract

Mn superoxide dismutase (MnSOD)-deficient mice (Sod2−/−) suffer from mitochondrial damage and have various survival times and phenotypic presentations that are dependent on the genetic background of the mutant mice. The mitochondrial NADPH transhydrogenase (NNT) was identified as a putative genetic modifier based on a genome-wide quantitative trait association study on the molecular defect of the protein in more severely affected Sod2−/− mice and on the biological function of NNT. Hence, Sod2−/− mice on the C57BL/6J (B6J) background have the shortest survival time, and the mice are homozygous for the truncated Nnt allele (Nnt T ). On the other hand, genetic backgrounds that support longer survival of Sod2−/− mice all have at least one normal copy of Nnt (Nnt W ). To confirm the role of NNT in the phenotypic modification of Sod2−/− mice, we introduced a normal copy of Nnt allele from a C57BL/6 substrain into B6J-Sod2−/− mice and analyzed survival time, cardiac functions, and histopathology of the heart. The study results show that the presence of a normal Nnt allele preserves cardiac function, delays the onset of heart failure, and extends the survival of B6J-Sod2−/− mice to the end of gestation. Postnatal survival, however, is not supported. Consequently, the majority of B6J-Sod2−/− mice died within a few hours after birth and only a few survived for 5–6 days. The study results suggest that NNT is important for normal development and function of fetal hearts and that there may be other genetic modifier(s) important for postnatal survival of Sod2−/− mice.

Journal

Mammalian GenomeSpringer Journals

Published: Nov 11, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off