Genetic factors involved in risk for methamphetamine intake and sensitization

Genetic factors involved in risk for methamphetamine intake and sensitization Lines of mice were created by selective breeding for the purpose of identifying genetic mechanisms that influence the magnitude of the selected trait and to explore genetic correlations for additional traits thought to be influenced by shared mechanisms. DNA samples from high and low methamphetamine-drinking (MADR) and high and low methamphetamine-sensitization lines were used for quantitative trait locus (QTL) mapping. Significant additive genetic correlations between the two traits indicated a common genetic influence, and a QTL on chromosome X was detected for both traits, suggesting one source of this commonality. For MADR mice, a QTL on chromosome 10 accounted for more than 50 % of the genetic variance in that trait. Microarray gene expression analyses were performed for three brain regions for methamphetamine-naïve MADR line mice: nucleus accumbens, prefrontal cortex, and ventral midbrain. Many of the genes that were differentially expressed between the high and low MADR lines were shared in common across the three brain regions. A gene network highly enriched in transcription factor genes was identified as being relevant to genetically determined differences in methamphetamine intake. When the mu opioid receptor gene (Oprm1), located on chromosome 10 in the QTL region, was added to this top-ranked transcription factor network, it became a hub in the network. These data are consistent with previously published findings of opioid response and intake differences between the MADR lines and suggest that Oprm1, or a gene that impacts activity of the opioid system, plays a role in genetically determined differences in methamphetamine intake. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Genetic factors involved in risk for methamphetamine intake and sensitization

Loading next page...
 
/lp/springer_journal/genetic-factors-involved-in-risk-for-methamphetamine-intake-and-lVFJ09QiEw
Publisher
Springer US
Copyright
Copyright © 2013 by Springer Science+Business Media New York (outside the USA)
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-013-9484-9
Publisher site
See Article on Publisher Site

Abstract

Lines of mice were created by selective breeding for the purpose of identifying genetic mechanisms that influence the magnitude of the selected trait and to explore genetic correlations for additional traits thought to be influenced by shared mechanisms. DNA samples from high and low methamphetamine-drinking (MADR) and high and low methamphetamine-sensitization lines were used for quantitative trait locus (QTL) mapping. Significant additive genetic correlations between the two traits indicated a common genetic influence, and a QTL on chromosome X was detected for both traits, suggesting one source of this commonality. For MADR mice, a QTL on chromosome 10 accounted for more than 50 % of the genetic variance in that trait. Microarray gene expression analyses were performed for three brain regions for methamphetamine-naïve MADR line mice: nucleus accumbens, prefrontal cortex, and ventral midbrain. Many of the genes that were differentially expressed between the high and low MADR lines were shared in common across the three brain regions. A gene network highly enriched in transcription factor genes was identified as being relevant to genetically determined differences in methamphetamine intake. When the mu opioid receptor gene (Oprm1), located on chromosome 10 in the QTL region, was added to this top-ranked transcription factor network, it became a hub in the network. These data are consistent with previously published findings of opioid response and intake differences between the MADR lines and suggest that Oprm1, or a gene that impacts activity of the opioid system, plays a role in genetically determined differences in methamphetamine intake.

Journal

Mammalian GenomeSpringer Journals

Published: Nov 13, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off