Genetic factors for resistance to diet-induced obesity and associated metabolic traits on mouse chromosome 17

Genetic factors for resistance to diet-induced obesity and associated metabolic traits on mouse... Obesity is associated with increased susceptibility to dyslipidemia, insulin resistance, and hypertension, a combination of traits that comprise the traditional definition of the metabolic syndrome. Recent evidence suggests that obesity is also associated with the development of nonalcoholic fatty liver disease (NAFLD). Despite the high prevalence of obesity and its related conditions, their etiologies and pathophysiology remains unknown. Both genetic and environmental factors contribute to the development of obesity and NAFLD. Previous genetic analysis of high-fat, diet-induced obesity in C57BL/6J (B6) and A/J male mice using a panel of B6-ChrA/J/NaJ chromosome substitution strains (CSSs) demonstrated that 17 CSSs conferred resistance to high-fat, diet-induced obesity. One of these CSS strains, CSS-17, which is homosomic for A/J-derived chromosome 17, was analyzed further and found to be resistant to diet-induced steatosis. In the current study we generated seven congenic strains derived from CCS-17, fed them either a high-fat, simple-carbohydrate (HFSC) or low-fat, simple-carbohydrate (LFSC) diet for 16 weeks and then analyzed body weight and related traits. From this study we identified several quantitative trait loci (QTLs). On a HFSC diet, Obrq13 protects against diet-induced obesity, steatosis, and elevated fasting insulin and glucose levels. On the LFSC diet, Obrq13 confers lower hepatic triglycerides, suggesting that this QTL regulates liver triglycerides regardless of diet. Obrq15 protects against diet-induced obesity and steatosis on the HFSC diet, and Obrq14 confers increased final body weight and results in steatosis and insulin resistance on the HFSC diet. In addition, on the LFSC diet, Obrq 16 confers decreased hepatic triglycerides and Obrq17 confers lower plasma triglycerides on the LFSC diet. These congenic strains provide mouse models to identify genes and metabolic pathways that are involved in the development of NAFLD and aspects of diet-induced metabolic syndrome. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Genetic factors for resistance to diet-induced obesity and associated metabolic traits on mouse chromosome 17

Loading next page...
 
/lp/springer_journal/genetic-factors-for-resistance-to-diet-induced-obesity-and-associated-n7pnGrvBHZ
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Life Sciences; Zoology ; Anatomy ; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-008-9165-2
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial