Genetic evolutionary algorithm for optimal allocation of wavelength converters in WDM optical networks

Genetic evolutionary algorithm for optimal allocation of wavelength converters in WDM optical... In this article, a genetic evolutionary algorithm is proposed for efficient allocation of wavelength converters in WDM optical networks. Since wavelength converters are expensive, it is desirable that each node in WDM optical networks uses a minimum number of wavelength converters to achieve a near-ideal performance. The searching capability of genetic evolutionary algorithm has been exploited for this purpose. The distinguished feature of the proposed approach lies in handling the conflicting circumstances during allocation of wavelength converters considering various practical aspects (e.g., spatial problem, connectivity of a node with other nodes) rather than arbitrarily to possibly improve the overall blocking performance of WDM optical networks. The proposed algorithm is compared with a previous approach to establish its effectiveness and the results demonstrate the ability of the proposed algorithm to efficiently solve the problem of Optimal Wavelength Converters Allocation (OWCA) in practical WDM optical networks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Genetic evolutionary algorithm for optimal allocation of wavelength converters in WDM optical networks

Loading next page...
 
/lp/springer_journal/genetic-evolutionary-algorithm-for-optimal-allocation-of-wavelength-M8qa3DUNyX
Publisher
Springer US
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-008-0115-4
Publisher site
See Article on Publisher Site

Abstract

In this article, a genetic evolutionary algorithm is proposed for efficient allocation of wavelength converters in WDM optical networks. Since wavelength converters are expensive, it is desirable that each node in WDM optical networks uses a minimum number of wavelength converters to achieve a near-ideal performance. The searching capability of genetic evolutionary algorithm has been exploited for this purpose. The distinguished feature of the proposed approach lies in handling the conflicting circumstances during allocation of wavelength converters considering various practical aspects (e.g., spatial problem, connectivity of a node with other nodes) rather than arbitrarily to possibly improve the overall blocking performance of WDM optical networks. The proposed algorithm is compared with a previous approach to establish its effectiveness and the results demonstrate the ability of the proposed algorithm to efficiently solve the problem of Optimal Wavelength Converters Allocation (OWCA) in practical WDM optical networks.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Feb 23, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off