Genetic evidence of extensive introgression of short-tailed ground squirrel genes in a hybridization zone of Spermophilus major and S. erythrogenys, inferred from sequencing of the mtDNA cytochrome b gene

Genetic evidence of extensive introgression of short-tailed ground squirrel genes in a... We have completely sequenced the mtDNA cytochrome b gene of ground squirrels from the zone of overlapping ranges of Spermophilus major and S. erythrogenys in the Tobol-Ishim interfluve, which is a putative hybridization zone of these species. The results of the sequencing showed extensive introgression of mtDNA genes of the short-tailed ground squirrel S. e. brevicauda, whose haplotype had fully replaced the S. major haplotype. All of the ground squirrels from the Tobol-Ishim interfluve had a variant of the S. e. brevicauda mtDNA haplotype that was specific for this zone. On average, 119 substitutions (10.44%) were found between S. major from Ul'yanovsk oblast and S. e. brevicauda from the northern Kazakhstan, the mean genetic distance (D) between them being 0.115, which conforms to the corresponding parameters for the S. e. brevicauda-S. pygmaeus pair (122 substitutions, D = 0.118). Insignificant differences (seven substitutions, D = 0.043) were found between the S. major and S. pygmaeus haplotypes, which suggest that these species have similar mitochondrial haplotypes. Five to ten nucleotide substitutions (0.44–0.88%) were detected between the animals from the Tobol-Ishim interfluve and S. e. brevicauda. The mtDNA haplotype divergence D within the genus Spermophilus (ten species) for all codon positions ranged from 0.035 to 0.158. Phylogenetic reconstructions (MP, ML, and NJ trees) showed two well-differentiated clusters with high bootstrap support. However, there was different branching topology within the cluster and their species composition varied. The maximum likelihood tree, ML, differentiating the species into two subgenera, Citellus and Colobotis, most reliably reflected taxonomic relationships of the species from the genus Spermophilus, inferred from morphological and genetic biochemical data. The morphologically pure S. major (subgenus Colobotis) animals, used in the analysis, proved to carry the haplotype of another species, S. pygmaeus (subgenus Citellus). This poses a question on the existence of the specific haplotype of S. major, the reason of its replacement by haplotype of other species, and possible consequences of this phenomenon for survival of the species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Genetic evidence of extensive introgression of short-tailed ground squirrel genes in a hybridization zone of Spermophilus major and S. erythrogenys, inferred from sequencing of the mtDNA cytochrome b gene

Loading next page...
 
/lp/springer_journal/genetic-evidence-of-extensive-introgression-of-short-tailed-ground-zq4VjZReaR
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by Pleiades Publishing, Inc.
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795406070167
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial