Genetic effects in Helix aspersa near a coal plant revealed by the micronucleus test

Genetic effects in Helix aspersa near a coal plant revealed by the micronucleus test Coal plants can be a major source of mutagenic pollutants. In this study we used the common land snail Helix aspersa, to detect the mutagenic effect of pollution from a coal plant in central Italy applying the micronucleus test (MN) on snail’s haemocytes and evaluating trace elements concentration (As Cd, Pb, Hg, and Zn) in soil and snails. Snails from a biological farm were exposed for 13 days in five locations at different distances from the plant. Wild snails collected in the same locations were also analysed. MN frequency in exposed snails was significantly higher in four locations within 10 km from to the plant, with respect to the control and the farthest location. Comparing the MN frequency between farmed and wild snails, a significantly higher frequency emerged for the exposed snails in all locations except the farthest, likely indicating adaptation or selection of the wild organisms due to chronic exposure to pollutants. In natural snails significantly higher MN frequencies with near the plant emerged as well. Trace elements analysis showed significant correlations between MN frequencies and both Zn and As concentrations in soil, for both exposed and wild snails, and Zn and Pb concentrations in exposed snails. Our results were consistent with those previously obtained when evaluating primary DNA damage in natural snails from the same area and show that the snails near the plant were affected by a permanent cytogenetic damage. Moreover, they confirm the suitability of snails for biomonitoring the presence of pollutants with mutagenic effect. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecotoxicology Springer Journals

Genetic effects in Helix aspersa near a coal plant revealed by the micronucleus test

Loading next page...
 
/lp/springer_journal/genetic-effects-in-helix-aspersa-near-a-coal-plant-revealed-by-the-yO9kNNrRKV
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Environment; Environment, general; Ecotoxicology; Ecology; Environmental Management
ISSN
0963-9292
eISSN
1573-3017
D.O.I.
10.1007/s10646-018-1906-8
Publisher site
See Article on Publisher Site

Abstract

Coal plants can be a major source of mutagenic pollutants. In this study we used the common land snail Helix aspersa, to detect the mutagenic effect of pollution from a coal plant in central Italy applying the micronucleus test (MN) on snail’s haemocytes and evaluating trace elements concentration (As Cd, Pb, Hg, and Zn) in soil and snails. Snails from a biological farm were exposed for 13 days in five locations at different distances from the plant. Wild snails collected in the same locations were also analysed. MN frequency in exposed snails was significantly higher in four locations within 10 km from to the plant, with respect to the control and the farthest location. Comparing the MN frequency between farmed and wild snails, a significantly higher frequency emerged for the exposed snails in all locations except the farthest, likely indicating adaptation or selection of the wild organisms due to chronic exposure to pollutants. In natural snails significantly higher MN frequencies with near the plant emerged as well. Trace elements analysis showed significant correlations between MN frequencies and both Zn and As concentrations in soil, for both exposed and wild snails, and Zn and Pb concentrations in exposed snails. Our results were consistent with those previously obtained when evaluating primary DNA damage in natural snails from the same area and show that the snails near the plant were affected by a permanent cytogenetic damage. Moreover, they confirm the suitability of snails for biomonitoring the presence of pollutants with mutagenic effect.

Journal

EcotoxicologySpringer Journals

Published: Feb 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off