Genetic dissection and validation of candidate genes for flag leaf size in rice (Oryza sativa L.)

Genetic dissection and validation of candidate genes for flag leaf size in rice (Oryza sativa L.) Key message Two major loci with functional candidate genes were identified and validated affecting flag leaf size, which offer desirable genes to improve leaf architecture and photosynthetic capacity in rice. Abstract Leaf size is a major determinant of plant architecture and yield potential in crops. However, the genetic and molecu- lar mechanisms regulating leaf size remain largely elusive. In this study, quantitative trait loci (QTLs) for flag leaf length and flag leaf width in rice were detected with high-density single nucleotide polymorphism genotyping of a chromosomal seg - ment substitution line (CSSL) population, in which each line carries one or a few chromosomal segments from the japonica cultivar Nipponbare in a common background of the indica variety Zhenshan 97. In total, 14 QTLs for flag leaf length and nine QTLs for flag leaf width were identified in the CSSL population. Among them, qFW4-2 for flag leaf width was mapped to a 37-kb interval, with the most likely candidate gene being the previously characterized NAL1. Another major QTL for both flag leaf width and length was delimited by substitution mapping to a small region of 13.5 kb that contains a single gene, Ghd7.1. Mutants of Ghd7.1 generated using CRISPR/CAS9 approach showed http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png TAG Theoretical and Applied Genetics Springer Journals

Genetic dissection and validation of candidate genes for flag leaf size in rice (Oryza sativa L.)

Loading next page...
 
/lp/springer_journal/genetic-dissection-and-validation-of-candidate-genes-for-flag-leaf-Ugc0Pg1J8r
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Plant Breeding/Biotechnology; Plant Genetics and Genomics; Agriculture; Plant Biochemistry; Biochemistry, general; Biotechnology
ISSN
0040-5752
eISSN
1432-2242
D.O.I.
10.1007/s00122-017-3036-8
Publisher site
See Article on Publisher Site

Abstract

Key message Two major loci with functional candidate genes were identified and validated affecting flag leaf size, which offer desirable genes to improve leaf architecture and photosynthetic capacity in rice. Abstract Leaf size is a major determinant of plant architecture and yield potential in crops. However, the genetic and molecu- lar mechanisms regulating leaf size remain largely elusive. In this study, quantitative trait loci (QTLs) for flag leaf length and flag leaf width in rice were detected with high-density single nucleotide polymorphism genotyping of a chromosomal seg - ment substitution line (CSSL) population, in which each line carries one or a few chromosomal segments from the japonica cultivar Nipponbare in a common background of the indica variety Zhenshan 97. In total, 14 QTLs for flag leaf length and nine QTLs for flag leaf width were identified in the CSSL population. Among them, qFW4-2 for flag leaf width was mapped to a 37-kb interval, with the most likely candidate gene being the previously characterized NAL1. Another major QTL for both flag leaf width and length was delimited by substitution mapping to a small region of 13.5 kb that contains a single gene, Ghd7.1. Mutants of Ghd7.1 generated using CRISPR/CAS9 approach showed

Journal

TAG Theoretical and Applied GeneticsSpringer Journals

Published: Dec 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off