Genetic control of multiple births in low ovulating mammalian species

Genetic control of multiple births in low ovulating mammalian species In mammals, litter size is a highly variable trait. Some species such as humans or cattle are monotocous, with one or sometimes two newborns per birth, whereas others, the polytocous species such as mice or pigs, are highly prolific and often produce a dozen newborns at each farrowing. In monotocous species, however, two or three newborns per birth may sometime be unwanted. In more polytocous species such as sheep or pigs, litter size is studied in order to increase livestock prolificacy. By contrast, twinning rates in humans or cattle may increase birth difficulties and health problems in the newborns. In this context, the aim of our review was to provide a clearer understanding of the genetic and physiological factors that control multiple births in low-ovulating mammalian species, with particular focus on three species: sheep, cattle, and humans, where knowledge of the ovulation rate in one may enlighten findings in the others. This article therefore reviews the phenotypic and genetic variability observed with respect to ovulation and twinning rates. It then presents the QTL and major genes that have been identified in each species. Finally, we draw a picture of the diversity of the physiological mechanisms underlying multiple ovulation. Although several major genes have been discovered in sheep, QTL detection methods in humans or cattle have suggested that the determinism of litter size is complex and probably involves several genes in order to explain variations in the number of ovulations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Genetic control of multiple births in low ovulating mammalian species

Loading next page...
 
/lp/springer_journal/genetic-control-of-multiple-births-in-low-ovulating-mammalian-species-Gx1X0z6kEd
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Life Sciences; Cell Biology; Zoology; Anatomy
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-012-9412-4
Publisher site
See Article on Publisher Site

Abstract

In mammals, litter size is a highly variable trait. Some species such as humans or cattle are monotocous, with one or sometimes two newborns per birth, whereas others, the polytocous species such as mice or pigs, are highly prolific and often produce a dozen newborns at each farrowing. In monotocous species, however, two or three newborns per birth may sometime be unwanted. In more polytocous species such as sheep or pigs, litter size is studied in order to increase livestock prolificacy. By contrast, twinning rates in humans or cattle may increase birth difficulties and health problems in the newborns. In this context, the aim of our review was to provide a clearer understanding of the genetic and physiological factors that control multiple births in low-ovulating mammalian species, with particular focus on three species: sheep, cattle, and humans, where knowledge of the ovulation rate in one may enlighten findings in the others. This article therefore reviews the phenotypic and genetic variability observed with respect to ovulation and twinning rates. It then presents the QTL and major genes that have been identified in each species. Finally, we draw a picture of the diversity of the physiological mechanisms underlying multiple ovulation. Although several major genes have been discovered in sheep, QTL detection methods in humans or cattle have suggested that the determinism of litter size is complex and probably involves several genes in order to explain variations in the number of ovulations.

Journal

Mammalian GenomeSpringer Journals

Published: Aug 8, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off