Genetic control of macrochaetae development in Drosophila melanogaster

Genetic control of macrochaetae development in Drosophila melanogaster The Drosophila head and body have a regular species-specific pattern of strictly defined number of external sensory organs—macrochaetae (large bristles). The pattern constancy and relatively simple organization of each bristle organ composed of only four specialized cells makes macrochaetae a convenient model to study the developmental patterns of spatial structures with a fixed number of elements in specific positions as well as the mechanisms of cell differentiation. The experimental data on the major genes and their products controlling three stages of macrochaetae development—the emergence of proneural clusters in the imaginal disc ectoderm, the precursor cell determination in the proneural clusters, and the specialization of cells of the definitive sensory organ—were reviewed. The role of the achaete-scute gene complex, EGFR and Notch signaling, and selector genes in these processes was considered. Analysis of published data allowed us to propose an integrated diagram of the system controlling macrochaetae development in D. melanogaster. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Genetic control of macrochaetae development in Drosophila melanogaster

Loading next page...
 
/lp/springer_journal/genetic-control-of-macrochaetae-development-in-drosophila-melanogaster-jrpUADu6qk
Publisher
Springer Journals
Copyright
Copyright © 2008 by MAIK Nauka
Subject
Life Sciences; Animal Anatomy / Morphology / Histology; Developmental Biology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360408040012
Publisher site
See Article on Publisher Site

Abstract

The Drosophila head and body have a regular species-specific pattern of strictly defined number of external sensory organs—macrochaetae (large bristles). The pattern constancy and relatively simple organization of each bristle organ composed of only four specialized cells makes macrochaetae a convenient model to study the developmental patterns of spatial structures with a fixed number of elements in specific positions as well as the mechanisms of cell differentiation. The experimental data on the major genes and their products controlling three stages of macrochaetae development—the emergence of proneural clusters in the imaginal disc ectoderm, the precursor cell determination in the proneural clusters, and the specialization of cells of the definitive sensory organ—were reviewed. The role of the achaete-scute gene complex, EGFR and Notch signaling, and selector genes in these processes was considered. Analysis of published data allowed us to propose an integrated diagram of the system controlling macrochaetae development in D. melanogaster.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Aug 9, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off