Genetic Control of Chromosome Synapsis in Mice Heterozygous for a Paracentric Inversion

Genetic Control of Chromosome Synapsis in Mice Heterozygous for a Paracentric Inversion Frequencies of formation of inversion loops and their relative sizes were studied in laboratory mice heterozygous for paracentric inversion In1(1)Rk in chromosome1, depending on the genetic background. Homozygotes In1/In1 were crossed with mice from five inbred strains (A/HeJ, BALB/cJ, C3H/HeJ, C57BL/6J, DBA2/J). The frequency of formation of inversion loops, their relative sizes, and the dependence of these parameters on the stage of pachytene were analyzed on electron-microscopic slides of spread spermatocytes in first-generation hybrids. It was shown that the genetic background and cross direction statistically significantly influenced the duration of individual pachytene stages and the frequency of inversion loops, but not relative loop size. Using a database on SNP distribution in the inbred strains examined, we carried out in silico mapping of genes affecting the genotype-dependent characters. We have found that the efficiency of synapsis in the inversion does not depend on interstrain differences in homology of the chromosome 1 region involved in the inversion. Genes controlling the inversion loop frequency in the inversion heterozygotes were mapped to chromosome 7, and genes controlling the duration of individual pachytene stages, to chromosomes 2 and 5. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Genetic Control of Chromosome Synapsis in Mice Heterozygous for a Paracentric Inversion

Loading next page...
 
/lp/springer_journal/genetic-control-of-chromosome-synapsis-in-mice-heterozygous-for-a-0Nc80RFb5h
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2005 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics; Microbial Genetics and Genomics; Animal Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1007/s11177-005-0133-6
Publisher site
See Article on Publisher Site

Abstract

Frequencies of formation of inversion loops and their relative sizes were studied in laboratory mice heterozygous for paracentric inversion In1(1)Rk in chromosome1, depending on the genetic background. Homozygotes In1/In1 were crossed with mice from five inbred strains (A/HeJ, BALB/cJ, C3H/HeJ, C57BL/6J, DBA2/J). The frequency of formation of inversion loops, their relative sizes, and the dependence of these parameters on the stage of pachytene were analyzed on electron-microscopic slides of spread spermatocytes in first-generation hybrids. It was shown that the genetic background and cross direction statistically significantly influenced the duration of individual pachytene stages and the frequency of inversion loops, but not relative loop size. Using a database on SNP distribution in the inbred strains examined, we carried out in silico mapping of genes affecting the genotype-dependent characters. We have found that the efficiency of synapsis in the inversion does not depend on interstrain differences in homology of the chromosome 1 region involved in the inversion. Genes controlling the inversion loop frequency in the inversion heterozygotes were mapped to chromosome 7, and genes controlling the duration of individual pachytene stages, to chromosomes 2 and 5.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Jul 15, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off