Genetic basis of the variability of nitrate reduction trait in Yersinia pestis strains

Genetic basis of the variability of nitrate reduction trait in Yersinia pestis strains The genetic basis of the varying ability to reduce nitrate in strains belonging to different biovars and subspecies of plague-causing microbe has been investigated and the inability to reduce nitrate observed in different intraspecies groups of Yersinia pestis has been shown to stem from mutations in different genes involved in the expression of this trait. The absence of denitrifying activity in strains of altaica and hissarica subspecies was not due to a mutation at position 613 of the periplasmic reductase napA observed in the strains of the biovar medievalis of the main subspecies, but rather was due to a mutation in the sequence encoding the nitrate-binding domain of the ABC transporter protein SsuA; a thymine insertion (+T) was detected at position 302 from the start of the ssuA gene. Five strains of biovar antiqua isolated at different times in Mongolia, China, and Africa were shown to lack the ability to reduce nitrate. A PCR test targeting two chromosomal regions containing deletions of 19 and 24 bp in size has been developed for the identification of strains of the biovar medievalis. This test can be combined with the test for the marker mutation in the napA gene for a more reliable detection of Y. pestis strains belonging to this biovar. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Genetic basis of the variability of nitrate reduction trait in Yersinia pestis strains

Loading next page...
 
/lp/springer_journal/genetic-basis-of-the-variability-of-nitrate-reduction-trait-in-0NBrsxHvWg
Publisher
Springer Journals
Copyright
Copyright © 2014 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795414050044
Publisher site
See Article on Publisher Site

Abstract

The genetic basis of the varying ability to reduce nitrate in strains belonging to different biovars and subspecies of plague-causing microbe has been investigated and the inability to reduce nitrate observed in different intraspecies groups of Yersinia pestis has been shown to stem from mutations in different genes involved in the expression of this trait. The absence of denitrifying activity in strains of altaica and hissarica subspecies was not due to a mutation at position 613 of the periplasmic reductase napA observed in the strains of the biovar medievalis of the main subspecies, but rather was due to a mutation in the sequence encoding the nitrate-binding domain of the ABC transporter protein SsuA; a thymine insertion (+T) was detected at position 302 from the start of the ssuA gene. Five strains of biovar antiqua isolated at different times in Mongolia, China, and Africa were shown to lack the ability to reduce nitrate. A PCR test targeting two chromosomal regions containing deletions of 19 and 24 bp in size has been developed for the identification of strains of the biovar medievalis. This test can be combined with the test for the marker mutation in the napA gene for a more reliable detection of Y. pestis strains belonging to this biovar.

Journal

Russian Journal of GeneticsSpringer Journals

Published: May 30, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off