Genetic background modulates behavioral impairments in R6/2 mice and suggests a role for dominant genetic modifiers in Huntington’s disease pathogenesis

Genetic background modulates behavioral impairments in R6/2 mice and suggests a role for dominant... Variability and modification of the symptoms of Huntington’s disease (HD) are commonly observed in both patient populations and animal models of the disease. Utilizing a stable line of the R6/2 HD mouse model, the present study investigated the role of genetic background in the onset and severity of HD symptoms in a transgenic mouse. R6/2 congenic C57BL/6J and C57BL/6J × DBA/2J F1 (B6D2F1) mice were evaluated for survival and a number of behavioral phenotypes. This study reports that the presence of the DBA/2J allele results in amelioration or exacerbation of several HD-like phenotypes characteristic of the R6/2 mouse model and indicates the presence of dominant genetic modifiers of HD symptoms. This study is the first step in identifying genes that confer natural genetic variation and modify the HD symptoms. This identification may lead to novel targets for treatment and help elucidate the molecular mechanisms of HD pathogenesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Genetic background modulates behavioral impairments in R6/2 mice and suggests a role for dominant genetic modifiers in Huntington’s disease pathogenesis

Loading next page...
 
/lp/springer_journal/genetic-background-modulates-behavioral-impairments-in-r6-2-mice-and-T0dW219r4w
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by The Author(s)
Subject
Life Sciences; Anatomy; Cell Biology; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-012-9391-5
Publisher site
See Article on Publisher Site

Abstract

Variability and modification of the symptoms of Huntington’s disease (HD) are commonly observed in both patient populations and animal models of the disease. Utilizing a stable line of the R6/2 HD mouse model, the present study investigated the role of genetic background in the onset and severity of HD symptoms in a transgenic mouse. R6/2 congenic C57BL/6J and C57BL/6J × DBA/2J F1 (B6D2F1) mice were evaluated for survival and a number of behavioral phenotypes. This study reports that the presence of the DBA/2J allele results in amelioration or exacerbation of several HD-like phenotypes characteristic of the R6/2 mouse model and indicates the presence of dominant genetic modifiers of HD symptoms. This study is the first step in identifying genes that confer natural genetic variation and modify the HD symptoms. This identification may lead to novel targets for treatment and help elucidate the molecular mechanisms of HD pathogenesis.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 31, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off