Genetic aspects of sexual behavior in malaria mosquitoes on the basis of specific acoustic signals at mating

Genetic aspects of sexual behavior in malaria mosquitoes on the basis of specific acoustic... Acoustic characteristics were studied in two species of the Anopheles maculipennis species complex, A. messeae and A. atroparvus. The species were found to clearly differ in sound frequencies, which was assumed to play a key role in species identification during mating in regions of their sympatric distribution. The sound spectrum in A. messeae was far more diverse than in A. atroparvus, which was associated with intraspecific inversion polymorphism of the former. Mosquitoes with the inversion combinations that were most common in populations of the central region of the A. messeae species area specifically differed in acoustic signal spectrum from each other. Hence, sound communication within the species was considered to be the main mechanism that is responsible for sexual partner selection and determines the chromosome associations observed earlier in individual karyotypes. Since males carrying different inversion combinations significantly differed in acoustic characteristics, females were assumed to play a main role in selecting the sexual partner. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Genetic aspects of sexual behavior in malaria mosquitoes on the basis of specific acoustic signals at mating

Loading next page...
 
/lp/springer_journal/genetic-aspects-of-sexual-behavior-in-malaria-mosquitoes-on-the-basis-MwBSVXsMiZ
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795412060099
Publisher site
See Article on Publisher Site

Abstract

Acoustic characteristics were studied in two species of the Anopheles maculipennis species complex, A. messeae and A. atroparvus. The species were found to clearly differ in sound frequencies, which was assumed to play a key role in species identification during mating in regions of their sympatric distribution. The sound spectrum in A. messeae was far more diverse than in A. atroparvus, which was associated with intraspecific inversion polymorphism of the former. Mosquitoes with the inversion combinations that were most common in populations of the central region of the A. messeae species area specifically differed in acoustic signal spectrum from each other. Hence, sound communication within the species was considered to be the main mechanism that is responsible for sexual partner selection and determines the chromosome associations observed earlier in individual karyotypes. Since males carrying different inversion combinations significantly differed in acoustic characteristics, females were assumed to play a main role in selecting the sexual partner.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Jun 14, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off