Genetic architecture of fear conditioning in chromosome substitution strains: relationship to measures of innate (unlearned) anxiety-like behavior

Genetic architecture of fear conditioning in chromosome substitution strains: relationship to... We measured fear conditioning (FC) in a panel of chromosome substitution strains (CSS) created using the C57BL/6J (B6) and A/J (AJ) inbred strains. Mice were trained to associate a specific context and tone with a foot shock. FC was measured by observing freezing behavior during re-exposure to the context and tone. Freezing to context was more than twofold greater in the AJ strain relative to the B6 strain. Among the CSS we identified four strains with higher (CSS-6, -10, -11, and -18) and two strains with lower (CSS-7 and -14) freezing to context. CSS-10 and -18 also showed higher freezing to tone, while CSS-12 showed less freezing to tone. CSS-1 has been implicated in open-field (OF) and light-dark box (LDB); we observed significant activity differences prior to training but no differences in FC. Chromosomes 6 and 10 have been associated with differences in anxiety-like behaviors, suggesting the existence of pleiotropic alleles that influence both learned and innate fear. By utilizing a genetic reference population, we have identified chromosomes that pleiotropically influence multiple phenotypes hypothesized to reflect a common ethologic construct that has been termed emotionality. The CSS provide a straightforward means of isolating the underlying genetic factors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Genetic architecture of fear conditioning in chromosome substitution strains: relationship to measures of innate (unlearned) anxiety-like behavior

Loading next page...
 
/lp/springer_journal/genetic-architecture-of-fear-conditioning-in-chromosome-substitution-80cIgGYyYd
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Zoology ; Anatomy ; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-007-9013-9
Publisher site
See Article on Publisher Site

Abstract

We measured fear conditioning (FC) in a panel of chromosome substitution strains (CSS) created using the C57BL/6J (B6) and A/J (AJ) inbred strains. Mice were trained to associate a specific context and tone with a foot shock. FC was measured by observing freezing behavior during re-exposure to the context and tone. Freezing to context was more than twofold greater in the AJ strain relative to the B6 strain. Among the CSS we identified four strains with higher (CSS-6, -10, -11, and -18) and two strains with lower (CSS-7 and -14) freezing to context. CSS-10 and -18 also showed higher freezing to tone, while CSS-12 showed less freezing to tone. CSS-1 has been implicated in open-field (OF) and light-dark box (LDB); we observed significant activity differences prior to training but no differences in FC. Chromosomes 6 and 10 have been associated with differences in anxiety-like behaviors, suggesting the existence of pleiotropic alleles that influence both learned and innate fear. By utilizing a genetic reference population, we have identified chromosomes that pleiotropically influence multiple phenotypes hypothesized to reflect a common ethologic construct that has been termed emotionality. The CSS provide a straightforward means of isolating the underlying genetic factors.

Journal

Mammalian GenomeSpringer Journals

Published: May 10, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off