Genetic and functional evaluation of MITF as a candidate gene for cutaneous melanoma predisposition in pigs

Genetic and functional evaluation of MITF as a candidate gene for cutaneous melanoma... Cutaneous melanoma arises from transformed melanocytes and is caused mainly by environmental effects such as ultraviolet radiation and to a lesser extent by predisposing genetic variants. Only a few susceptibility genes for cutaneous melanoma have been identified so far in human; therefore, animal models represent a valuable alternative for genetic studies of this disease. In a previous quantitative trait locus (QTL) study, several susceptibility regions were identified in a swine biomedical model, the MeLiM (Melanoblastoma-bearing Libechov minipig) pigs. This article details the fine-mapping of a QTL located on SSC13 (Sus scrofa chromosome 13) through an increase in marker density. New microsatellites were used to confirm the results of the first analysis, and MITF (microphthalmia-associated transcription factor) was selected as a candidate gene for melanoma development. A single-marker association analysis was performed with single-nucleotide polymorphisms (SNPs) spread over the locus, but it did not reveal a significant association with diverse melanoma-related traits. In parallel, MITF alternative transcripts were characterized and their expression was investigated in different porcine tissues. The obtained results showed a complex transcriptional regulation concordant with the one present in other mammals. Notably, the ratio between MITF+ and MITF− isoforms in melanoma samples followed the same pattern as in human tumors, which highlights the adequacy of the MeLiM pig as a model for human melanoma. In conclusion, although MITF does not seem to be the causal gene of the QTL initially observed, we do not exclude a prominent role of its transcription and function in the outbreak and evolution of the tumors observed in pigs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Loading next page...
 
/lp/springer_journal/genetic-and-functional-evaluation-of-mitf-as-a-candidate-gene-for-0tXoBqsbfj
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Life Sciences; Anatomy; Cell Biology; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-011-9334-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial