Genetic and cytological analyses of the male sterility mutation induced in a sorghum tissue culture with streptomycin

Genetic and cytological analyses of the male sterility mutation induced in a sorghum tissue... Treatment of sorghum callus cultures with 500–1000 mg/l streptomycin led to a high regeneration frequency of plants with complete or partial male sterility (MS), up to 100% of all green regenerants. The induced MS mutation (ms-str) was preserved in the F1 and BC1 progenies and was genetically unstable: many families produced semisterile and fertile revertants, whose progenies again contained semisterile and sterile mutants. The ms-str mutation was maintained through eight generations via selection and self-pollination of semisterile plants. The mutation was inherited as a recessive nuclear mutation in test crosses of sterile plants segregated in the progenies of fertile and semisterile revertants and was expressed only in single cases in a test cross for ms-str transfer through pollen of hybrids with restored male fertility. Recessive nuclear mutations determining a low plant height (dwarfness) and the lack of waxy bloom on the stem and leaves (bloomless) were found in male-sterile plants with the ms-str mutation. Cytological analysis of sterile plants reveal multiple abnormalities at various pollen development stages and in tapetal cells: cytomyxis, defects of chromosome conjugation, distorted cytokinesis in meiotic division II, a lack of tetrad separation, a defective formation of the microspore coat, generation of microspores with two to four nuclei, and the formation of micronuclei and large vacuoles in tapetal cells. A possible transfer of the induced cytoplasmic MS mutation into the nuclear genome and the causes of the high genetic instability are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Genetic and cytological analyses of the male sterility mutation induced in a sorghum tissue culture with streptomycin

Loading next page...
 
/lp/springer_journal/genetic-and-cytological-analyses-of-the-male-sterility-mutation-vrh8qGExgP
Publisher
Springer Journals
Copyright
Copyright © 2008 by MAIK Nauka
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795408050104
Publisher site
See Article on Publisher Site

Abstract

Treatment of sorghum callus cultures with 500–1000 mg/l streptomycin led to a high regeneration frequency of plants with complete or partial male sterility (MS), up to 100% of all green regenerants. The induced MS mutation (ms-str) was preserved in the F1 and BC1 progenies and was genetically unstable: many families produced semisterile and fertile revertants, whose progenies again contained semisterile and sterile mutants. The ms-str mutation was maintained through eight generations via selection and self-pollination of semisterile plants. The mutation was inherited as a recessive nuclear mutation in test crosses of sterile plants segregated in the progenies of fertile and semisterile revertants and was expressed only in single cases in a test cross for ms-str transfer through pollen of hybrids with restored male fertility. Recessive nuclear mutations determining a low plant height (dwarfness) and the lack of waxy bloom on the stem and leaves (bloomless) were found in male-sterile plants with the ms-str mutation. Cytological analysis of sterile plants reveal multiple abnormalities at various pollen development stages and in tapetal cells: cytomyxis, defects of chromosome conjugation, distorted cytokinesis in meiotic division II, a lack of tetrad separation, a defective formation of the microspore coat, generation of microspores with two to four nuclei, and the formation of micronuclei and large vacuoles in tapetal cells. A possible transfer of the induced cytoplasmic MS mutation into the nuclear genome and the causes of the high genetic instability are discussed.

Journal

Russian Journal of GeneticsSpringer Journals

Published: May 23, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off