Genetic analysis of toxic aluminum ion tolerance in barley

Genetic analysis of toxic aluminum ion tolerance in barley The genetic control of high tolerance of toxic aluminum ions in barley Hordeum vulgare L. has been studied. Cultivar Faust I (c-24612) and accession c9736 from Karelia have been compared with aluminum-sensitive cv. Colsess IV (accession c-24626). Analysis of F1, F2BC1, F3, and F4 progenies has shown that the development of roots of cv. Faust I in water medium with aluminum ions is determined by one (Alp F1) or two (Alp F1 and Alp F2) genes. The development of roots of accession c9736 is determined by two genes, Alp K1 and Alp K2. The genes have not been not tested for nonidentity. The high tolerance of Faust I shoots are determined by one major tolerance factor and one dominant inhibitor gene, which hampers the manifestation of the dominant tolerance gene. The penetrance of the inhibitor gene may be incomplete. The aluminum sensitivity of roots and 7-day shoots of cv. Faust I is determined by different genetic factors. The response of barley plants to aluminum ions may be determined by small-effect genes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Genetic analysis of toxic aluminum ion tolerance in barley

Loading next page...
 
/lp/springer_journal/genetic-analysis-of-toxic-aluminum-ion-tolerance-in-barley-XIuL0kJBhm
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Microbial Genetics and Genomics; Animal Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795406030100
Publisher site
See Article on Publisher Site

Abstract

The genetic control of high tolerance of toxic aluminum ions in barley Hordeum vulgare L. has been studied. Cultivar Faust I (c-24612) and accession c9736 from Karelia have been compared with aluminum-sensitive cv. Colsess IV (accession c-24626). Analysis of F1, F2BC1, F3, and F4 progenies has shown that the development of roots of cv. Faust I in water medium with aluminum ions is determined by one (Alp F1) or two (Alp F1 and Alp F2) genes. The development of roots of accession c9736 is determined by two genes, Alp K1 and Alp K2. The genes have not been not tested for nonidentity. The high tolerance of Faust I shoots are determined by one major tolerance factor and one dominant inhibitor gene, which hampers the manifestation of the dominant tolerance gene. The penetrance of the inhibitor gene may be incomplete. The aluminum sensitivity of roots and 7-day shoots of cv. Faust I is determined by different genetic factors. The response of barley plants to aluminum ions may be determined by small-effect genes.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Mar 25, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial