Genetic alterations at the Bpag1 locus in dt mice and their impact on transcript expression

Genetic alterations at the Bpag1 locus in dt mice and their impact on transcript expression The dystonin/Bpag1 gene encodes several tissue-specific alternatively spliced transcripts that encode cytoskeletal binding proteins. These various isoforms are necessary for maintaining the structural integrity of epithelial, neural, and muscle tissues. Mutations in the dystonin/Bpag1 gene cause dystonia musculorum (dt), a hereditary neuropathy of the mouse characterized by the progressive degeneration of sensory neurons. Several dt mutant alleles exist, most of which have arisen through spontaneous mutations. In this article we demonstrate that the dt locus encodes 107 exons spanning 400 kb. The high frequency of occurrence of spontaneous dt mutants may therefore be a result of the large size of the gene. Analysis of genomic DNA from several dt spontaneous mutant alleles, dt 24J , dt 27J , dt Alb , and dt Frk , shows a deletion of the central portion of the gene in dt Alb but no large rearrangements or deletions in the other alleles. These other alleles likely have small deletions or rearrangements, or point mutations. To determine the impact of the known and unknown mutations on transcript levels, RT-PCR was performed to detect various coding regions of the dystonin/Bpag1 transcripts in brain and muscle from multiple dt alleles: dt Tg4 , dt Alb , dt 24J , dt 27J , and dt Frk . With the exception of dt Frk , reduced transcript levels were observed for all alleles tested. Such alterations likely result in reduced or absent dystonin/Bpag1 protein levels. Thus, distinct genetic defects lead to a common outcome of reduced transcript expression causing the same phenotype in multiple dt alleles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Genetic alterations at the Bpag1 locus in dt mice and their impact on transcript expression

Loading next page...
 
/lp/springer_journal/genetic-alterations-at-the-bpag1-locus-in-dt-mice-and-their-impact-on-84rLgmtd8L
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Anatomy; Cell Biology; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-005-0073-4
Publisher site
See Article on Publisher Site

Abstract

The dystonin/Bpag1 gene encodes several tissue-specific alternatively spliced transcripts that encode cytoskeletal binding proteins. These various isoforms are necessary for maintaining the structural integrity of epithelial, neural, and muscle tissues. Mutations in the dystonin/Bpag1 gene cause dystonia musculorum (dt), a hereditary neuropathy of the mouse characterized by the progressive degeneration of sensory neurons. Several dt mutant alleles exist, most of which have arisen through spontaneous mutations. In this article we demonstrate that the dt locus encodes 107 exons spanning 400 kb. The high frequency of occurrence of spontaneous dt mutants may therefore be a result of the large size of the gene. Analysis of genomic DNA from several dt spontaneous mutant alleles, dt 24J , dt 27J , dt Alb , and dt Frk , shows a deletion of the central portion of the gene in dt Alb but no large rearrangements or deletions in the other alleles. These other alleles likely have small deletions or rearrangements, or point mutations. To determine the impact of the known and unknown mutations on transcript levels, RT-PCR was performed to detect various coding regions of the dystonin/Bpag1 transcripts in brain and muscle from multiple dt alleles: dt Tg4 , dt Alb , dt 24J , dt 27J , and dt Frk . With the exception of dt Frk , reduced transcript levels were observed for all alleles tested. Such alterations likely result in reduced or absent dystonin/Bpag1 protein levels. Thus, distinct genetic defects lead to a common outcome of reduced transcript expression causing the same phenotype in multiple dt alleles.

Journal

Mammalian GenomeSpringer Journals

Published: Dec 8, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off