Generation of waves in a bounded basin by a traveling front of atmospheric pressure and the field of wind stresses induced by this front

Generation of waves in a bounded basin by a traveling front of atmospheric pressure and the field... A plane problem of generation of barotropic seiches in a bounded rotating basin by traveling atmospheric fronts is studied within the framework of the linear theory of long waves. The front is characterized by disturbances of the baric field and the corresponding field of tangential wind stresses. We deduce the modified Ackerblom formulas for the wind stresses according to the given anomalies of atmospheric pressure in which the uniform transport of disturbances of the baric field is taken into account. We perform the numerical analyses of the dependences of the amplitudes of oscillations of fluid in the basin on the parameters of the atmospheric front and the choice of the formulas for the tangential wind stresses. The influence of the wind stresses leads to significant quantitative and qualitative changes in the oscillations of fluid in the basin as compared with the case of pure baric action. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

Generation of waves in a bounded basin by a traveling front of atmospheric pressure and the field of wind stresses induced by this front

Loading next page...
 
/lp/springer_journal/generation-of-waves-in-a-bounded-basin-by-a-traveling-front-of-GoWbkwgfJr
Publisher
Springer US
Copyright
Copyright © 2011 by Springer Science+Business Media, Inc.
Subject
Earth Sciences; Oceanography; Remote Sensing/Photogrammetry; Atmospheric Sciences; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1007/s11110-011-9118-2
Publisher site
See Article on Publisher Site

Abstract

A plane problem of generation of barotropic seiches in a bounded rotating basin by traveling atmospheric fronts is studied within the framework of the linear theory of long waves. The front is characterized by disturbances of the baric field and the corresponding field of tangential wind stresses. We deduce the modified Ackerblom formulas for the wind stresses according to the given anomalies of atmospheric pressure in which the uniform transport of disturbances of the baric field is taken into account. We perform the numerical analyses of the dependences of the amplitudes of oscillations of fluid in the basin on the parameters of the atmospheric front and the choice of the formulas for the tangential wind stresses. The influence of the wind stresses leads to significant quantitative and qualitative changes in the oscillations of fluid in the basin as compared with the case of pure baric action.

Journal

Physical OceanographySpringer Journals

Published: Dec 10, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off