Generation of polygonal gas interfaces by soap film for Richtmyer–Meshkov instability study

Generation of polygonal gas interfaces by soap film for Richtmyer–Meshkov instability study A simple method of generating polygonal gas interfaces is proposed by using the soap film technique. Thin pins are used as angular vertexes to connect the adjacent sides of polygonal soap films in order to avoid the pressure singularities around the vertexes caused by the surface tension. As a demonstration, three polygonal interfaces (i.e., square, equilateral triangle and diamond) are created in the test section of a shock tube. Experiments are then carried out for a planar shock wave (Mach number about 1.2) interacting with air/SF6 polygonal interfaces. Numerical simulations are also performed to validate the proposed method of the interface formation. Wave systems and interface structures can be clearly identified in experimental schlieren images and agree well with the numerical results. It is also indicated that the presences of thin pins and fine chamfers only have limited effects on the interface evolution and can be ignored at the very early stage. Experimental and numerical results about the movement of the distorted interface, the width and height of the interface structures are further compared and good agreement is achieved. It is then concluded that the polygonal interface formed by the proposed method is applicable for the Richtmyer–Meshkov instability study. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Generation of polygonal gas interfaces by soap film for Richtmyer–Meshkov instability study

Loading next page...
 
/lp/springer_journal/generation-of-polygonal-gas-interfaces-by-soap-film-for-richtmyer-g0vn0ucQxa
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1427-9
Publisher site
See Article on Publisher Site

Abstract

A simple method of generating polygonal gas interfaces is proposed by using the soap film technique. Thin pins are used as angular vertexes to connect the adjacent sides of polygonal soap films in order to avoid the pressure singularities around the vertexes caused by the surface tension. As a demonstration, three polygonal interfaces (i.e., square, equilateral triangle and diamond) are created in the test section of a shock tube. Experiments are then carried out for a planar shock wave (Mach number about 1.2) interacting with air/SF6 polygonal interfaces. Numerical simulations are also performed to validate the proposed method of the interface formation. Wave systems and interface structures can be clearly identified in experimental schlieren images and agree well with the numerical results. It is also indicated that the presences of thin pins and fine chamfers only have limited effects on the interface evolution and can be ignored at the very early stage. Experimental and numerical results about the movement of the distorted interface, the width and height of the interface structures are further compared and good agreement is achieved. It is then concluded that the polygonal interface formed by the proposed method is applicable for the Richtmyer–Meshkov instability study.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 20, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off