Generation of low-molecular-weight organic compounds in water by titania photocatalyst under UV-Vis light radiation

Generation of low-molecular-weight organic compounds in water by titania photocatalyst under... We attempted to develop a new type titania photocatalyst that, when activated, responded in not only the ultraviolet rays region but also visible light radiation region by the new titania photocatalyst with the zirconia and nitrogen simultaneously introduced in the titania lattice. The decomposition performance of the standard organic compound in water by this new type titania photocatalyst nanoparticle was compared with the conventional type under both the ultraviolet ray and visible light radiation conditions. It was suggested that the low-molecular-weight organic compounds were also generated from the organic compound in water by the new type titania photocatalyst activities under the visible light radiation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Generation of low-molecular-weight organic compounds in water by titania photocatalyst under UV-Vis light radiation

Loading next page...
 
/lp/springer_journal/generation-of-low-molecular-weight-organic-compounds-in-water-by-ILxzueRiF7
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856708784040623
Publisher site
See Article on Publisher Site

Abstract

We attempted to develop a new type titania photocatalyst that, when activated, responded in not only the ultraviolet rays region but also visible light radiation region by the new titania photocatalyst with the zirconia and nitrogen simultaneously introduced in the titania lattice. The decomposition performance of the standard organic compound in water by this new type titania photocatalyst nanoparticle was compared with the conventional type under both the ultraviolet ray and visible light radiation conditions. It was suggested that the low-molecular-weight organic compounds were also generated from the organic compound in water by the new type titania photocatalyst activities under the visible light radiation.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 15, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off