Generation of highly potent organic fertilizer from pernicious aquatic weed Salvinia molesta

Generation of highly potent organic fertilizer from pernicious aquatic weed Salvinia molesta Utilization of Salvinia molesta, an aquatic weed which is notorious for its allelopathy and invasiveness, has been explored by its vermicomposting. Fourier transform infrared spectroscopy (FT-IR) and plant bioassay tests were conducted to analyze the composition and fertilizer value of S .molesta vermicompost. Germination and seedling growth tests were performed in soil supplemented with vermicompost at levels ranging from 0.75 to 40% by weight of the soil on three common food plants, ladies finger (Abelmoschus esculentus), cucumber (Cucumis sativus), and green gram (Vigna radiata). The influence of S. molesta’s vermicompost on some of the physicochemical and biological attributes of the soil was also studied. FT-IR analysis revealed that S. molesta loses its allelopathy, as the chemical compounds that are responsible for it are largely destroyed, in the course of its vermicomposting. There is also an indication that a portion of lignin content of S. molesta is degraded. Vermicompost enhanced the germination success and promoted the morphological growth and biochemical content of the plant species studied. It also bestowed plant friendly physicochemical and biological attributes to the soil. The findings raise the prospect that billions of tons of S. molesta biomass―which not only goes to waste at present but is also a cause of serious harm to the environment―may become utilizable in organic agriculture. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Generation of highly potent organic fertilizer from pernicious aquatic weed Salvinia molesta

Loading next page...
 
/lp/springer_journal/generation-of-highly-potent-organic-fertilizer-from-pernicious-aquatic-V5AYnriDvh
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-0826-0
Publisher site
See Article on Publisher Site

Abstract

Utilization of Salvinia molesta, an aquatic weed which is notorious for its allelopathy and invasiveness, has been explored by its vermicomposting. Fourier transform infrared spectroscopy (FT-IR) and plant bioassay tests were conducted to analyze the composition and fertilizer value of S .molesta vermicompost. Germination and seedling growth tests were performed in soil supplemented with vermicompost at levels ranging from 0.75 to 40% by weight of the soil on three common food plants, ladies finger (Abelmoschus esculentus), cucumber (Cucumis sativus), and green gram (Vigna radiata). The influence of S. molesta’s vermicompost on some of the physicochemical and biological attributes of the soil was also studied. FT-IR analysis revealed that S. molesta loses its allelopathy, as the chemical compounds that are responsible for it are largely destroyed, in the course of its vermicomposting. There is also an indication that a portion of lignin content of S. molesta is degraded. Vermicompost enhanced the germination success and promoted the morphological growth and biochemical content of the plant species studied. It also bestowed plant friendly physicochemical and biological attributes to the soil. The findings raise the prospect that billions of tons of S. molesta biomass―which not only goes to waste at present but is also a cause of serious harm to the environment―may become utilizable in organic agriculture.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Dec 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off