Generation of consistent skin model shape based on FEA method

Generation of consistent skin model shape based on FEA method Controlling product geometric quality is an important issue, because real parts deviate from their nominal value (e.g., in form, orientation, and position error of features, size of part, etc.). To analyze the influence of these deviations on final product, one solution is to consider the nonnominal Skin Model Shape to simulate assembly, manufacturing, or metrology. The modeling of nonnominal parts is still in its initial phases. First, methods of generating a single feature with deviations are reviewed and classified. With the combination of the single nonideal features to obtain the complete nonideal model of the part, geometrical issues appear, such as gaps and self-intersections. These can be influenced by acute and obtuse angles and the ratio between mesh size and deviation value. From an analysis of these issues, two deviation combination methods are proposed to preserve the manufacturing deviation of features and consistency of the model. These methods are qualified as local and global methods. The local method is based on the iterative calculation of mesh regularization. The global method is based on finite element analysis, with manufacturing deviations added to the nominal model by the penalty function approach. The effectiveness and efficiency of both kinds of method are compared on a trial geometry. The global method is preferred as it needs no iterative calculation, no stop criteria and gives better results. Finally, the proposed method is validated on a more complex mechanical part: a cutter body. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Generation of consistent skin model shape based on FEA method

Loading next page...
 
/lp/springer_journal/generation-of-consistent-skin-model-shape-based-on-fea-method-dMJ5JcFbmU
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0177-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial