Generation of consistent skin model shape based on FEA method

Generation of consistent skin model shape based on FEA method Controlling product geometric quality is an important issue, because real parts deviate from their nominal value (e.g., in form, orientation, and position error of features, size of part, etc.). To analyze the influence of these deviations on final product, one solution is to consider the nonnominal Skin Model Shape to simulate assembly, manufacturing, or metrology. The modeling of nonnominal parts is still in its initial phases. First, methods of generating a single feature with deviations are reviewed and classified. With the combination of the single nonideal features to obtain the complete nonideal model of the part, geometrical issues appear, such as gaps and self-intersections. These can be influenced by acute and obtuse angles and the ratio between mesh size and deviation value. From an analysis of these issues, two deviation combination methods are proposed to preserve the manufacturing deviation of features and consistency of the model. These methods are qualified as local and global methods. The local method is based on the iterative calculation of mesh regularization. The global method is based on finite element analysis, with manufacturing deviations added to the nominal model by the penalty function approach. The effectiveness and efficiency of both kinds of method are compared on a trial geometry. The global method is preferred as it needs no iterative calculation, no stop criteria and gives better results. Finally, the proposed method is validated on a more complex mechanical part: a cutter body. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Generation of consistent skin model shape based on FEA method

Loading next page...
 
/lp/springer_journal/generation-of-consistent-skin-model-shape-based-on-fea-method-dMJ5JcFbmU
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0177-5
Publisher site
See Article on Publisher Site

Abstract

Controlling product geometric quality is an important issue, because real parts deviate from their nominal value (e.g., in form, orientation, and position error of features, size of part, etc.). To analyze the influence of these deviations on final product, one solution is to consider the nonnominal Skin Model Shape to simulate assembly, manufacturing, or metrology. The modeling of nonnominal parts is still in its initial phases. First, methods of generating a single feature with deviations are reviewed and classified. With the combination of the single nonideal features to obtain the complete nonideal model of the part, geometrical issues appear, such as gaps and self-intersections. These can be influenced by acute and obtuse angles and the ratio between mesh size and deviation value. From an analysis of these issues, two deviation combination methods are proposed to preserve the manufacturing deviation of features and consistency of the model. These methods are qualified as local and global methods. The local method is based on the iterative calculation of mesh regularization. The global method is based on finite element analysis, with manufacturing deviations added to the nominal model by the penalty function approach. The effectiveness and efficiency of both kinds of method are compared on a trial geometry. The global method is preferred as it needs no iterative calculation, no stop criteria and gives better results. Finally, the proposed method is validated on a more complex mechanical part: a cutter body.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Mar 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off