Generation and evaluation of an H9N1 influenza vaccine derived by reverse genetics that allows utilization of a DIVA strategy for control of H9N2 avian influenza

Generation and evaluation of an H9N1 influenza vaccine derived by reverse genetics that allows... H9N2 avian influenza viruses have circulated widely in domestic poultry around the world, and their outbreaks have resulted in heavy morbidity and mortality. In addition, H9N2 avian influenza viruses were transmitted directly from birds to humans in Hong Kong and mainland China during 1998 and 2003, which prompted the public health authorities to seek protective strategies to control H9N2 influenza viruses. In this study, we attempted to develop a DIVA (differentiating infected and vaccinated animals) strategy for H9N2 avian influenza viruses. This strategy does not interfere with serological monitoring and allows effective control of H9N2 avian influenza. We generated a reassortant H9N1 influenza vaccine strain by reverse genetics and employed an enzyme-linked immunosorbent assay (ELISA) with a truncated N1 antigen expressed in E. coli to differentiate between vaccinated and naturally infected animals. Immunization of BALB/c mice with the inactivated reassortant H9N1 vaccine conferred protection against lethal challenge with H9N2 viruses. Meanwhile, the ELISA can be used to distinguish between vaccination and natural infection quickly and easily. Therefore, this study has opened up a new avenue for the control of H9N2 avian influenza. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Generation and evaluation of an H9N1 influenza vaccine derived by reverse genetics that allows utilization of a DIVA strategy for control of H9N2 avian influenza

Loading next page...
 
/lp/springer_journal/generation-and-evaluation-of-an-h9n1-influenza-vaccine-derived-by-RwIROaEA7l
Publisher
Springer Vienna
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-009-0425-6
Publisher site
See Article on Publisher Site

Abstract

H9N2 avian influenza viruses have circulated widely in domestic poultry around the world, and their outbreaks have resulted in heavy morbidity and mortality. In addition, H9N2 avian influenza viruses were transmitted directly from birds to humans in Hong Kong and mainland China during 1998 and 2003, which prompted the public health authorities to seek protective strategies to control H9N2 influenza viruses. In this study, we attempted to develop a DIVA (differentiating infected and vaccinated animals) strategy for H9N2 avian influenza viruses. This strategy does not interfere with serological monitoring and allows effective control of H9N2 avian influenza. We generated a reassortant H9N1 influenza vaccine strain by reverse genetics and employed an enzyme-linked immunosorbent assay (ELISA) with a truncated N1 antigen expressed in E. coli to differentiate between vaccinated and naturally infected animals. Immunization of BALB/c mice with the inactivated reassortant H9N1 vaccine conferred protection against lethal challenge with H9N2 viruses. Meanwhile, the ELISA can be used to distinguish between vaccination and natural infection quickly and easily. Therefore, this study has opened up a new avenue for the control of H9N2 avian influenza.

Journal

Archives of VirologySpringer Journals

Published: Aug 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off