Generation and control of tracer particles for optical flow investigations in air

Generation and control of tracer particles for optical flow investigations in air The production of monodisperse tracer particles with suitable properties for optical flow investigations, such as small size, spherical shape, smooth surface, appropriate density and diffraction index, non-evaporating and agglomerating, electrically neutral, non-toxic and easily removable, is a challenging task due to the sensitivity of the particle size distribution to the boundary conditions. In order to obtain general design and operating rules for atomizers which are mostly applied for air flows, this dependence is investigated here. It is shown that high concentrations of narrow band particle size distributions, with a mean diameter below 1 µm, can easily be generated by means of multi-hole nozzles under over-critical pressure conditions, when the kinetic energy, transferred into the seeding liquid through the nozzle exits, is well balanced with the liquid volume inside the atomizer. In addition, flow visualization pictures are presented which permit a useful assessment of the functioning of the nozzles and reveal operating features of the atomizers which were not previously known. In particular, it is shown that existing explanations of the importance of certain design features of the Laskin nozzle are of minor importance for the generation of appropriate tracer particles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Generation and control of tracer particles for optical flow investigations in air

Loading next page...
 
/lp/springer_journal/generation-and-control-of-tracer-particles-for-optical-flow-g0TsZtJzo7
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-002-0492-x
Publisher site
See Article on Publisher Site

Abstract

The production of monodisperse tracer particles with suitable properties for optical flow investigations, such as small size, spherical shape, smooth surface, appropriate density and diffraction index, non-evaporating and agglomerating, electrically neutral, non-toxic and easily removable, is a challenging task due to the sensitivity of the particle size distribution to the boundary conditions. In order to obtain general design and operating rules for atomizers which are mostly applied for air flows, this dependence is investigated here. It is shown that high concentrations of narrow band particle size distributions, with a mean diameter below 1 µm, can easily be generated by means of multi-hole nozzles under over-critical pressure conditions, when the kinetic energy, transferred into the seeding liquid through the nozzle exits, is well balanced with the liquid volume inside the atomizer. In addition, flow visualization pictures are presented which permit a useful assessment of the functioning of the nozzles and reveal operating features of the atomizers which were not previously known. In particular, it is shown that existing explanations of the importance of certain design features of the Laskin nozzle are of minor importance for the generation of appropriate tracer particles.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 21, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off