Generating spiral tool paths based on spiral enter assistant line

Generating spiral tool paths based on spiral enter assistant line In order to increase cutting width, decrease tool path length, and improve machining efficiency, the spiral enter assistant line (SEAL) is embedded into a convex pocket to plan a spiral tool path. First, the inner offset curve of the pocket boundary undergoes equidistant division to acquire the external equidistant points. Subsequently, principal component analysis (PCA) and length factors optimization are employed to obtain SEAL. Next, vector operation is performed on the external equidistant points and SEAL to calculate the corresponding internal points. After connecting the external equidistant points and the corresponding internal points, a B-spline spiral tool path is planned based on linear interpolation and B-spline curve fitting. In addition, the length factors can be adjusted to modify the distribution and length of the tool path. Theoretical analysis and machining experiments demonstrate that compared to other conventional algorithms, the spiral tool path presented in this study has obvious advantages on cutting width, tool path length, and machining efficiency. These advantages are especially pronounced when the major principal axis is much longer than the minor principal axis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Generating spiral tool paths based on spiral enter assistant line

Loading next page...
 
/lp/springer_journal/generating-spiral-tool-paths-based-on-spiral-enter-assistant-line-cksma444pH
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0130-7
Publisher site
See Article on Publisher Site

Abstract

In order to increase cutting width, decrease tool path length, and improve machining efficiency, the spiral enter assistant line (SEAL) is embedded into a convex pocket to plan a spiral tool path. First, the inner offset curve of the pocket boundary undergoes equidistant division to acquire the external equidistant points. Subsequently, principal component analysis (PCA) and length factors optimization are employed to obtain SEAL. Next, vector operation is performed on the external equidistant points and SEAL to calculate the corresponding internal points. After connecting the external equidistant points and the corresponding internal points, a B-spline spiral tool path is planned based on linear interpolation and B-spline curve fitting. In addition, the length factors can be adjusted to modify the distribution and length of the tool path. Theoretical analysis and machining experiments demonstrate that compared to other conventional algorithms, the spiral tool path presented in this study has obvious advantages on cutting width, tool path length, and machining efficiency. These advantages are especially pronounced when the major principal axis is much longer than the minor principal axis.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Mar 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off