Generating multipartite entangled states of qubits distributed in different cavities

Generating multipartite entangled states of qubits distributed in different cavities Cavity-based large-scale quantum information processing (QIP) needs a large number of qubits, and placing all of them in a single cavity quickly runs into many fundamental and practical problems such as the increase in cavity decay rate and decrease in qubit-cavity coupling strength. Therefore, future QIP most likely will require quantum networks consisting of a large number of cavities, each hosting and coupled to multiple qubits. In this work, we propose a way to prepare a $$W$$ W -class entangled state of spatially separated multiple qubits in different cavities, which are connected to a coupler qubit. Because no cavity photon is excited, decoherence caused by the cavity decay is greatly suppressed during the entanglement preparation. This proposal needs only one coupler qubit and one operational step, and does not require using a classical pulse, so that the engineering complexity is much reduced and the operation is greatly simplified. As an example of the experimental implementation, we further give a numerical analysis, which shows that high-fidelity generation of the $$W$$ W state using three superconducting phase qubits each embedded in a one-dimensional transmission line resonator is feasible within the present circuit QED technique. The proposal is quite general and can be applied to accomplish the same task with other types of qubits such as superconducting flux qubits, charge qubits, quantum dots, nitrogen-vacancy centers, and atoms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Generating multipartite entangled states of qubits distributed in different cavities

Loading next page...
 
/lp/springer_journal/generating-multipartite-entangled-states-of-qubits-distributed-in-ZuxI5n0t50
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-014-0734-x
Publisher site
See Article on Publisher Site

Abstract

Cavity-based large-scale quantum information processing (QIP) needs a large number of qubits, and placing all of them in a single cavity quickly runs into many fundamental and practical problems such as the increase in cavity decay rate and decrease in qubit-cavity coupling strength. Therefore, future QIP most likely will require quantum networks consisting of a large number of cavities, each hosting and coupled to multiple qubits. In this work, we propose a way to prepare a $$W$$ W -class entangled state of spatially separated multiple qubits in different cavities, which are connected to a coupler qubit. Because no cavity photon is excited, decoherence caused by the cavity decay is greatly suppressed during the entanglement preparation. This proposal needs only one coupler qubit and one operational step, and does not require using a classical pulse, so that the engineering complexity is much reduced and the operation is greatly simplified. As an example of the experimental implementation, we further give a numerical analysis, which shows that high-fidelity generation of the $$W$$ W state using three superconducting phase qubits each embedded in a one-dimensional transmission line resonator is feasible within the present circuit QED technique. The proposal is quite general and can be applied to accomplish the same task with other types of qubits such as superconducting flux qubits, charge qubits, quantum dots, nitrogen-vacancy centers, and atoms.

Journal

Quantum Information ProcessingSpringer Journals

Published: Feb 11, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off