Generating efficient toolpath by cutter posture optimization in five-axis machining based on inverse feedback mechanism

Generating efficient toolpath by cutter posture optimization in five-axis machining based on... This paper proposes a tool posture optimization method in five-axis machining using configuration space (C-Space) transformation according to the inverse feedback message. In conventional computer numerical control (CNC) manufacture process, the machining status information transmission is in single direction, and the CNC system interpolates the toolpaths without feedback. However, considering the drives’ acceleration and deceleration, the interpolation situation would greatly affect the machining efficiency and the trajectory should be adjusted in CNC. In this case, the toolpath efficiency is deteriorated and unable to be evaluated exactly by traditional c omputer-aided manufacturing (CAM) system, where the efficiency is approximately estimated by the length of toolpath. In this paper, an inverse feedback mechanism is proposed; the simulated information on CNC system interpolation can be feedback to CAM system to help evaluate the toolpath efficiency. An axis-based dynamic confined feedrate schedule model is used to find the feed sensitive zones of the toolpaths. A C-Space method is adopted to adjust the tool postures in the sensitive zones. Several examples are given to verify the method, and the machining efficiency is raised by 10% on the whole after feedback optimization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Generating efficient toolpath by cutter posture optimization in five-axis machining based on inverse feedback mechanism

Loading next page...
 
/lp/springer_journal/generating-efficient-toolpath-by-cutter-posture-optimization-in-five-TgQ0HIaOx2
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0205-5
Publisher site
See Article on Publisher Site

Abstract

This paper proposes a tool posture optimization method in five-axis machining using configuration space (C-Space) transformation according to the inverse feedback message. In conventional computer numerical control (CNC) manufacture process, the machining status information transmission is in single direction, and the CNC system interpolates the toolpaths without feedback. However, considering the drives’ acceleration and deceleration, the interpolation situation would greatly affect the machining efficiency and the trajectory should be adjusted in CNC. In this case, the toolpath efficiency is deteriorated and unable to be evaluated exactly by traditional c omputer-aided manufacturing (CAM) system, where the efficiency is approximately estimated by the length of toolpath. In this paper, an inverse feedback mechanism is proposed; the simulated information on CNC system interpolation can be feedback to CAM system to help evaluate the toolpath efficiency. An axis-based dynamic confined feedrate schedule model is used to find the feed sensitive zones of the toolpaths. A C-Space method is adopted to adjust the tool postures in the sensitive zones. Several examples are given to verify the method, and the machining efficiency is raised by 10% on the whole after feedback optimization.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Mar 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off