Generalized Harmonic Functions and the Dewetting of Thin Films

Generalized Harmonic Functions and the Dewetting of Thin Films This paper describes the solvability of Dirichlet problems for Laplace's equation when the boundary data is not smooth enough for the existence of a weak solution in H 1 Ω. Scales of spaces of harmonic functions and of boundary traces are defined and the solutions are characterized as limits of classical harmonic functions in special norms. The generalized harmonic functions, and their norms, are defined using series expansions involving harmonic Steklov eigenfunctions on the domain. It is shown that the usual trace operator has a continuous extension to an isometric isomorphism of specific spaces. This provides a characterization of the generalized solutions of harmonic Dirichlet problems. Numerical simulations of a model problem are described. This problem is related to the dewetting of thin films and the associated phenomenology is described. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Generalized Harmonic Functions and the Dewetting of Thin Films

Loading next page...
 
/lp/springer_journal/generalized-harmonic-functions-and-the-dewetting-of-thin-films-0WLXAWT1wF
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Methods
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-006-0883-0
Publisher site
See Article on Publisher Site

Abstract

This paper describes the solvability of Dirichlet problems for Laplace's equation when the boundary data is not smooth enough for the existence of a weak solution in H 1 Ω. Scales of spaces of harmonic functions and of boundary traces are defined and the solutions are characterized as limits of classical harmonic functions in special norms. The generalized harmonic functions, and their norms, are defined using series expansions involving harmonic Steklov eigenfunctions on the domain. It is shown that the usual trace operator has a continuous extension to an isometric isomorphism of specific spaces. This provides a characterization of the generalized solutions of harmonic Dirichlet problems. Numerical simulations of a model problem are described. This problem is related to the dewetting of thin films and the associated phenomenology is described.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Mar 1, 2007

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off