Generalized Gabidulin codes over fields of any characteristic

Generalized Gabidulin codes over fields of any characteristic We generalize Gabidulin codes to a large family of fields, non necessarily finite, possibly with characteristic zero. We consider a general field extension and any automorphism in the Galois group of the extension. This setting enables one to give several definitions of metrics related to the rank-metric, yet potentially different. We provide sufficient conditions on the given automorphism to ensure that the associated rank metrics are indeed all equal and proper, in coherence with the usual definition from linearized polynomials over finite fields. Under these conditions, we generalize the notion of Gabidulin codes. We also present an algorithm for decoding errors and erasures, whose complexity is given in terms of arithmetic operations. Over infinite fields the notion of code alphabet is essential, and more issues appear that in the finite field case. We first focus on codes over integer rings and study their associated decoding problem. But even if the code alphabet is small, we have to deal with the growth of intermediate values. A classical solution to this problem is to perform the computations modulo a prime ideal. For this, we need study the reduction of generalized Gabidulin codes modulo an ideal. We show that the codes obtained by reduction are the classical Gabidulin codes over finite fields. As a consequence, under some conditions, decoding generalized Gabidulin codes over integer rings can be reduced to decoding Gabidulin codes over a finite field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Designs, Codes and Cryptography Springer Journals

Generalized Gabidulin codes over fields of any characteristic

Loading next page...
 
/lp/springer_journal/generalized-gabidulin-codes-over-fields-of-any-characteristic-gOf97B5DSF
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Mathematics; Combinatorics; Coding and Information Theory; Data Structures, Cryptology and Information Theory; Data Encryption; Discrete Mathematics in Computer Science; Information and Communication, Circuits
ISSN
0925-1022
eISSN
1573-7586
D.O.I.
10.1007/s10623-017-0425-6
Publisher site
See Article on Publisher Site

Abstract

We generalize Gabidulin codes to a large family of fields, non necessarily finite, possibly with characteristic zero. We consider a general field extension and any automorphism in the Galois group of the extension. This setting enables one to give several definitions of metrics related to the rank-metric, yet potentially different. We provide sufficient conditions on the given automorphism to ensure that the associated rank metrics are indeed all equal and proper, in coherence with the usual definition from linearized polynomials over finite fields. Under these conditions, we generalize the notion of Gabidulin codes. We also present an algorithm for decoding errors and erasures, whose complexity is given in terms of arithmetic operations. Over infinite fields the notion of code alphabet is essential, and more issues appear that in the finite field case. We first focus on codes over integer rings and study their associated decoding problem. But even if the code alphabet is small, we have to deal with the growth of intermediate values. A classical solution to this problem is to perform the computations modulo a prime ideal. For this, we need study the reduction of generalized Gabidulin codes modulo an ideal. We show that the codes obtained by reduction are the classical Gabidulin codes over finite fields. As a consequence, under some conditions, decoding generalized Gabidulin codes over integer rings can be reduced to decoding Gabidulin codes over a finite field.

Journal

Designs, Codes and CryptographySpringer Journals

Published: Oct 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off