Genealogical analysis of the use of two wheatgrass (Agropyron) species in common wheat (Triticum aestivum L.) breeding for disease resistance

Genealogical analysis of the use of two wheatgrass (Agropyron) species in common wheat (Triticum... During the last 80 years, in order to increase the genetic variability of wheat, translocations containing nine elongated wheatgrass (Agropyron elongatum) and eight intermediate wheatgrass (Agropyron intermedium) genes, which control resistance to pathogens, were transferred to this crop culture. Genealogical and statistical analysis of 1500 varieties developed using the wheatgrass gave evidence of the continuing increase in the proportion of such varieties in the total number of wheat varieties over the last half-century. Translocations from Ag. elongatum most commonly occur in the pedigrees of the varieties from the United States, less frequently they can be found in Australian and Chinese varieties, and they are extremely rare—in European and African ones. Ag. intermedium most frequently occurs in the pedigrees of the Eastern European varieties, mainly in those from Russia, as well as in the varieties from China. The observed uneven distribution of such varieties may be associated with either the effectiveness of the translocation in the development of resistance to the local populations of pathogens or with the effect of the translocation on the adaptive traits of plants. By computer tracking of pedigrees, we performed an inventory of the translocation donors from Ag. elongatum and Ag. intermedium used in the breeding programs in the United States, Russia, Australia, India, and China. The most widely occurring combinations of the gene complex Lr24/Sr24 of Ag. elongatum with other resistance genes were revealed. In Russia, there were developed varieties in which the 6D chromosome was substituted by the 6Ai chromosome of Ag. intermedium, which controls disease resistance and the adaptivity of plants. The identification and introgression of new translocations indicates that the possibilities of using wheatgrass species for broadening of genetic variability of wheat are far from being exhausted. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Genealogical analysis of the use of two wheatgrass (Agropyron) species in common wheat (Triticum aestivum L.) breeding for disease resistance

Loading next page...
 
/lp/springer_journal/genealogical-analysis-of-the-use-of-two-wheatgrass-agropyron-species-v12ZMw8Yju
Publisher
Springer Journals
Copyright
Copyright © 2016 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795416020071
Publisher site
See Article on Publisher Site

Abstract

During the last 80 years, in order to increase the genetic variability of wheat, translocations containing nine elongated wheatgrass (Agropyron elongatum) and eight intermediate wheatgrass (Agropyron intermedium) genes, which control resistance to pathogens, were transferred to this crop culture. Genealogical and statistical analysis of 1500 varieties developed using the wheatgrass gave evidence of the continuing increase in the proportion of such varieties in the total number of wheat varieties over the last half-century. Translocations from Ag. elongatum most commonly occur in the pedigrees of the varieties from the United States, less frequently they can be found in Australian and Chinese varieties, and they are extremely rare—in European and African ones. Ag. intermedium most frequently occurs in the pedigrees of the Eastern European varieties, mainly in those from Russia, as well as in the varieties from China. The observed uneven distribution of such varieties may be associated with either the effectiveness of the translocation in the development of resistance to the local populations of pathogens or with the effect of the translocation on the adaptive traits of plants. By computer tracking of pedigrees, we performed an inventory of the translocation donors from Ag. elongatum and Ag. intermedium used in the breeding programs in the United States, Russia, Australia, India, and China. The most widely occurring combinations of the gene complex Lr24/Sr24 of Ag. elongatum with other resistance genes were revealed. In Russia, there were developed varieties in which the 6D chromosome was substituted by the 6Ai chromosome of Ag. intermedium, which controls disease resistance and the adaptivity of plants. The identification and introgression of new translocations indicates that the possibilities of using wheatgrass species for broadening of genetic variability of wheat are far from being exhausted.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Mar 31, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off