Genealogical analysis of the use of aegilops (Aegilops L.) genetic material in wheat (Triticum aestivum L.).

Genealogical analysis of the use of aegilops (Aegilops L.) genetic material in wheat (Triticum... A genealogical analysis of accessions in the global gene pool of the wheat database GRIS4.0 showed that the use of the genetic material of Aegilops in wheat breeding began about half a century ago. During this time, more than 1350 varieties and 9000 lines, the pedigree of which contains Aegilops species, were created in different regions of the world. The spatial and temporal dynamics of the distribution of wheat varieties containing the genetic material of Aegilops was investigated. Analysis of the data showed that most commercial varieties with a pedigree including Ae. tauschii and/or Ae. umbellulata were created and grown in North America. More than 70% of the varieties were produced with Ae. ventricosa, which is common in western and central Europe. A gradual increase in the proportion of varieties with Aegilops genetic material was recorded from 1962 to 2011. The percentage of varieties created with the involvement of Ae. umbellulata increased from 1–5% in the 1960s to 25–29% in the 2000s. Those created with Ae. tauschii increased from 0 to 14–18%, and those created with Ae. ventricosa increased from 1 to 34–37%. The increases in the number of these varieties indicates that the resistance genes from Aegilops species retain their effectiveness. Genealogical analysis of the varieties in which resistance genes from Aegilops were postulated revealed that varieties or lines that were sources of identified genes were often absent in the pedigree. This may be due to an incorrect pedigree record or errors in the identification of resistance genes by phytopathological testing and/or the use of molecular markers, or confusion in nurseries. Preliminary analysis of pedigrees provides an opportunity to reveal discrepancies between the pedigree and postulated genes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Genealogical analysis of the use of aegilops (Aegilops L.) genetic material in wheat (Triticum aestivum L.).

Loading next page...
 
/lp/springer_journal/genealogical-analysis-of-the-use-of-aegilops-aegilops-l-genetic-aSGt7xqiRF
Publisher
Springer Journals
Copyright
Copyright © 2015 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795415090070
Publisher site
See Article on Publisher Site

Abstract

A genealogical analysis of accessions in the global gene pool of the wheat database GRIS4.0 showed that the use of the genetic material of Aegilops in wheat breeding began about half a century ago. During this time, more than 1350 varieties and 9000 lines, the pedigree of which contains Aegilops species, were created in different regions of the world. The spatial and temporal dynamics of the distribution of wheat varieties containing the genetic material of Aegilops was investigated. Analysis of the data showed that most commercial varieties with a pedigree including Ae. tauschii and/or Ae. umbellulata were created and grown in North America. More than 70% of the varieties were produced with Ae. ventricosa, which is common in western and central Europe. A gradual increase in the proportion of varieties with Aegilops genetic material was recorded from 1962 to 2011. The percentage of varieties created with the involvement of Ae. umbellulata increased from 1–5% in the 1960s to 25–29% in the 2000s. Those created with Ae. tauschii increased from 0 to 14–18%, and those created with Ae. ventricosa increased from 1 to 34–37%. The increases in the number of these varieties indicates that the resistance genes from Aegilops species retain their effectiveness. Genealogical analysis of the varieties in which resistance genes from Aegilops were postulated revealed that varieties or lines that were sources of identified genes were often absent in the pedigree. This may be due to an incorrect pedigree record or errors in the identification of resistance genes by phytopathological testing and/or the use of molecular markers, or confusion in nurseries. Preliminary analysis of pedigrees provides an opportunity to reveal discrepancies between the pedigree and postulated genes.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Sep 15, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off