Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR)

Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR) Methylenetetrahydrofolate reductase (MTHFR) catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine. A human cDNA for MTHFR, 2.2 kb in length, has been expressed and shown to result in a catalytically active enzyme of approximately 70 kDa. Fifteen mutations have been identified in the MTHFR gene: 14 rare mutations associated with severe enzymatic deficiency and 1 common variant associated with a milder deficiency. The common polymorphism has been implicated in three multifactorial diseases: occlusive vascular disease, neural tube defects, and colon cancer. The human gene has been mapped to chromosomal region 1p36.3 while the mouse gene has been localized to distal Chromosome (Chr) 4. Here we report the isolation and characterization of the human and mouse genes for MTHFR. A human genomic clone (17 kb) was found to contain the entire cDNA sequence of 2.2 kb; there were 11 exons ranging in size from 102 bp to 432 bp. Intron sizes ranged from 250 bp to 1.5 kb with one exception of 4.2 kb. The mouse genomic clones (19 kb) start 7 kb 5′ exon 1 and extend to the end of the coding sequence. The mouse amino acid sequence is approximately 90% identical to the corresponding human sequence. The exon sizes, locations of intronic boundaries, and intron sizes are also quite similar between the two species. The availability of human genomic clones has been useful in designing primers for exon amplification and mutation detection. The mouse genomic clones will be helpful in designing constructs for gene targeting and generation of mouse models for MTHFR deficiency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR)

Loading next page...
 
/lp/springer_journal/gene-structure-of-human-and-mouse-methylenetetrahydrofolate-reductase-vcb3Z0cxvg
Publisher
Springer-Verlag
Copyright
Copyright © 1998 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003359900838
Publisher site
See Article on Publisher Site

Abstract

Methylenetetrahydrofolate reductase (MTHFR) catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine. A human cDNA for MTHFR, 2.2 kb in length, has been expressed and shown to result in a catalytically active enzyme of approximately 70 kDa. Fifteen mutations have been identified in the MTHFR gene: 14 rare mutations associated with severe enzymatic deficiency and 1 common variant associated with a milder deficiency. The common polymorphism has been implicated in three multifactorial diseases: occlusive vascular disease, neural tube defects, and colon cancer. The human gene has been mapped to chromosomal region 1p36.3 while the mouse gene has been localized to distal Chromosome (Chr) 4. Here we report the isolation and characterization of the human and mouse genes for MTHFR. A human genomic clone (17 kb) was found to contain the entire cDNA sequence of 2.2 kb; there were 11 exons ranging in size from 102 bp to 432 bp. Intron sizes ranged from 250 bp to 1.5 kb with one exception of 4.2 kb. The mouse genomic clones (19 kb) start 7 kb 5′ exon 1 and extend to the end of the coding sequence. The mouse amino acid sequence is approximately 90% identical to the corresponding human sequence. The exon sizes, locations of intronic boundaries, and intron sizes are also quite similar between the two species. The availability of human genomic clones has been useful in designing primers for exon amplification and mutation detection. The mouse genomic clones will be helpful in designing constructs for gene targeting and generation of mouse models for MTHFR deficiency.

Journal

Mammalian GenomeSpringer Journals

Published: Aug 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off