Gene Structure and Expression Pattern Analysis of Three Monodehydroascorbate Reductase (Mdhar) Genes in Physcomitrella patens: Implications for the Evolution of the MDHAR Family in Plants*

Gene Structure and Expression Pattern Analysis of Three Monodehydroascorbate Reductase (Mdhar)... The ascorbate–glutathione pathway plays a major role in the detoxification of reactive oxygen species (ROS) in vascular plants. One of the key enzymes in this pathway is monodehydroascorbate reductase (MDHAR), a FAD enzyme that catalyses the reduction of the monodehydroascorbate radical. To elucidate the evolution and functional role of MDHAR we identified and characterised MDHARs from the moss Physcomitrella patens. Expressed sequence tag (EST) databases containing approximately 100.000 ESTs from Physcomitrella were searched and three isoforms of monodehydroascorbate reductase (PpMDHAR1, PpMDHAR2 and PpMDHAR3) were identified. In vascular plants MDHAR is found in the cytosol, chloroplast, mitochondria and peroxisome. Surprisingly, all three PpMDHARs resembled the cytosolic isoforms from vascular plants lacking the NH2-terminal or COOH-terminal extension found in organelle targeted MDHARs. The number and position of introns was also conserved between PpMDHARs and cytosolic MDHARs from vascular plants. Phylogenetic analysis revealed that cytosolic MDHARs are monophyletic in origin and the ancestral gene evolved before the divergence of bryophytes more than 400 million years ago. Transcript analyses showed that expression of PpMdhar1 and PpMdhar3 was increased up to 5-fold under salt stress, osmotic stress or upon exposure to abscisic acid. In contrast, PpMdhar transcription levels were unchanged upon chilling, UV-B exposure or oxidative stress. The conservation of cytosolic MDHAR in the land-plant lineage and the transcriptional upregulation under water deficiency suggest that the evolution of cytosolic MDHAR played an essential role in stress protection for land plants when they inhabited the dry terrestrial environment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Gene Structure and Expression Pattern Analysis of Three Monodehydroascorbate Reductase (Mdhar) Genes in Physcomitrella patens: Implications for the Evolution of the MDHAR Family in Plants*

Loading next page...
 
/lp/springer_journal/gene-structure-and-expression-pattern-analysis-of-three-iUVGbZWsKd
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2006 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-3881-8
Publisher site
See Article on Publisher Site

Abstract

The ascorbate–glutathione pathway plays a major role in the detoxification of reactive oxygen species (ROS) in vascular plants. One of the key enzymes in this pathway is monodehydroascorbate reductase (MDHAR), a FAD enzyme that catalyses the reduction of the monodehydroascorbate radical. To elucidate the evolution and functional role of MDHAR we identified and characterised MDHARs from the moss Physcomitrella patens. Expressed sequence tag (EST) databases containing approximately 100.000 ESTs from Physcomitrella were searched and three isoforms of monodehydroascorbate reductase (PpMDHAR1, PpMDHAR2 and PpMDHAR3) were identified. In vascular plants MDHAR is found in the cytosol, chloroplast, mitochondria and peroxisome. Surprisingly, all three PpMDHARs resembled the cytosolic isoforms from vascular plants lacking the NH2-terminal or COOH-terminal extension found in organelle targeted MDHARs. The number and position of introns was also conserved between PpMDHARs and cytosolic MDHARs from vascular plants. Phylogenetic analysis revealed that cytosolic MDHARs are monophyletic in origin and the ancestral gene evolved before the divergence of bryophytes more than 400 million years ago. Transcript analyses showed that expression of PpMdhar1 and PpMdhar3 was increased up to 5-fold under salt stress, osmotic stress or upon exposure to abscisic acid. In contrast, PpMdhar transcription levels were unchanged upon chilling, UV-B exposure or oxidative stress. The conservation of cytosolic MDHAR in the land-plant lineage and the transcriptional upregulation under water deficiency suggest that the evolution of cytosolic MDHAR played an essential role in stress protection for land plants when they inhabited the dry terrestrial environment.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 10, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off