Gene replacement by homologous recombination in plants

Gene replacement by homologous recombination in plants After the elucidation of the sequence of the yeast genome a major effort was started to elucidate the biological function of all open reading frames of this organisms by targeted gene replacement via homologous recombination. The establishment of the complete sequence of the genome of Arabidopsis thaliana would principally allow a similar approach. However, over the past dozen years all attempts to establish an efficient gene targeting technique in flowering plants were in the end not successful. In contrast, in Physcomitrella patens an efficient gene targeting procedure has been set up, making the moss a valuable model system for plant molecular biologists. But also for flowering plants recently several new approaches – some of them based on the availability of the genomic sequence of Arabidopsis – were initiated that might finally result on the set up of a general applicable technique. Beside the production of hyper-recombinogenic plants either via expression or suppression of specific gene functions or via undirected mutagenesis, the application of chimeric oligonucleotides might result in major progress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Gene replacement by homologous recombination in plants

Loading next page...
 
/lp/springer_journal/gene-replacement-by-homologous-recombination-in-plants-rASB2Tripy
Publisher
Springer Journals
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1013761821763
Publisher site
See Article on Publisher Site

Abstract

After the elucidation of the sequence of the yeast genome a major effort was started to elucidate the biological function of all open reading frames of this organisms by targeted gene replacement via homologous recombination. The establishment of the complete sequence of the genome of Arabidopsis thaliana would principally allow a similar approach. However, over the past dozen years all attempts to establish an efficient gene targeting technique in flowering plants were in the end not successful. In contrast, in Physcomitrella patens an efficient gene targeting procedure has been set up, making the moss a valuable model system for plant molecular biologists. But also for flowering plants recently several new approaches – some of them based on the availability of the genomic sequence of Arabidopsis – were initiated that might finally result on the set up of a general applicable technique. Beside the production of hyper-recombinogenic plants either via expression or suppression of specific gene functions or via undirected mutagenesis, the application of chimeric oligonucleotides might result in major progress.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off