Gene expression profiling in Salmonella Choleraesuis-infected porcine lung using a long oligonucleotide microarray

Gene expression profiling in Salmonella Choleraesuis-infected porcine lung using a long... Understanding the transcriptional response to pathogenic bacterial infection within food animals is of fundamental and applied interest. To determine the transcriptional response to Salmonella enterica serovar Choleraesuis (SC) infection, a 13,297-oligonucleotide swine array was used to analyze RNA from control, 24-h postinoculation (hpi), and 48-hpi porcine lung tissue from pigs infected with SC. In total, 57 genes showed differential expression (p < 0.001; false discovery rate = 12%). Quantitative real-time PCR (qRT-PCR) of 61 genes was used to confirm the microarray results and to identify pathways responding to infection. Of the 33 genes identified by microarray analysis as differentially expressed, 23 were confirmed by qRT-PCR results. A novel finding was that two transglutaminase family genes (TGM1 and TGM3) showed dramatic increases in expression postinoculation; combined with several other apoptotic genes, they indicated the induction of apoptotic pathways during SC infection. A predominant T helper 1-type immune response occurred during infection, with interferon γ (IFNG) significantly increased at 48 hpi. Genes induced by IFNs (GBP1, GBP2, C1S, C1R, MHC2TA, PSMB8, TAP1, TAP2) showed increased expression during porcine lung infection. These data represent the first thorough investigation of gene regulation pathways that control an important porcine respiratory and foodborne bacterial infection. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Gene expression profiling in Salmonella Choleraesuis-infected porcine lung using a long oligonucleotide microarray

Loading next page...
 
/lp/springer_journal/gene-expression-profiling-in-salmonella-choleraesuis-infected-porcine-zqjTEvkcy8
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Anatomy; Zoology; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-005-0155-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial