Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break rate

Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated... We previously identified a cluster of d ormancy-a ssociated M ADS-box transcription factors (DAM genes) in peach [Prunus persica (L.) Batsch] as potential candidates for control of the non-dormant phenotype observed in the evg mutant. Of these genes, DAM3, DAM5 and DAM6 were winter expressed, suggesting a role for these genes during endodormancy. We used peach cultivars with contrasting chilling requirements (CR) for bud break to observe the expression of DAM3, DAM5 and DAM6 in response to chilling accumulation in the field and controlled environments. Vegetative terminal and floral buds were sampled weekly from field grown ‘Contender’ (1050 h CR), ‘Rubyprince’ (850 h CR) and ‘Springprince’ (650 h CR) peach cultivars through winter 2008-2009. Flower and vegetative terminal bud break potential was evaluated at each sampling by forcing cuttings in a growth-permissive environment. We also measured vegetative terminal bud break and DAM gene expression in potted ‘Contender’ and ‘Peen-To’ (450 h CR) trees under controlled-environment cold exposure. DAM3, DAM5 and DAM6 are all suppressed by exposure to chilling temperatures in the field and in controlled conditions. Expression of DAM5 and DAM6 are higher in high chill cultivars prior to chilling accumulation and their expression level reaches a minimum in each cultivar coincident with acquisition of bud break competence. Expression levels of DAM5 and DAM6 in vegetative tips in controlled environment conditions were negatively correlated with the time required for bud break in forcing conditions. The expression patterns of DAM5 and DAM6 are consistent with a role as quantitative repressors of bud break. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break rate

Loading next page...
 
/lp/springer_journal/gene-expression-of-dam5-and-dam6-is-suppressed-by-chilling-3mZWHDP37C
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-010-9608-5
Publisher site
See Article on Publisher Site

Abstract

We previously identified a cluster of d ormancy-a ssociated M ADS-box transcription factors (DAM genes) in peach [Prunus persica (L.) Batsch] as potential candidates for control of the non-dormant phenotype observed in the evg mutant. Of these genes, DAM3, DAM5 and DAM6 were winter expressed, suggesting a role for these genes during endodormancy. We used peach cultivars with contrasting chilling requirements (CR) for bud break to observe the expression of DAM3, DAM5 and DAM6 in response to chilling accumulation in the field and controlled environments. Vegetative terminal and floral buds were sampled weekly from field grown ‘Contender’ (1050 h CR), ‘Rubyprince’ (850 h CR) and ‘Springprince’ (650 h CR) peach cultivars through winter 2008-2009. Flower and vegetative terminal bud break potential was evaluated at each sampling by forcing cuttings in a growth-permissive environment. We also measured vegetative terminal bud break and DAM gene expression in potted ‘Contender’ and ‘Peen-To’ (450 h CR) trees under controlled-environment cold exposure. DAM3, DAM5 and DAM6 are all suppressed by exposure to chilling temperatures in the field and in controlled conditions. Expression of DAM5 and DAM6 are higher in high chill cultivars prior to chilling accumulation and their expression level reaches a minimum in each cultivar coincident with acquisition of bud break competence. Expression levels of DAM5 and DAM6 in vegetative tips in controlled environment conditions were negatively correlated with the time required for bud break in forcing conditions. The expression patterns of DAM5 and DAM6 are consistent with a role as quantitative repressors of bud break.

Journal

Plant Molecular BiologySpringer Journals

Published: Feb 9, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off