Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.)

Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat... We present the first cloning and study of glutamine synthetase (GS) genes in wheat (Triticum aestivum L.). Based on sequence analysis, phylogenetic studies and mapping data, ten GS sequences were classified into four sub-families: GS2 (a, b and c), GS1 (a, b and c), GSr (1 and 2) and GSe (1 and 2). Phylogenetic analysis showed that the wheat GS sub-families together with the GS genes from other monocotyledonous species form four distinct clades. Immunolocalisation studies in leaves, stems and rachis in plants at flowering showed GS protein to be present in parenchyma, phloem companion and perifascicular sheath cells. In situ localisation confirmed that GS1 transcripts were present in the perifascicular sheath cells whilst those for GSr were confined to the vascular cells. Studies of the expression and protein profiles showed that all GS sub-families were differentially expressed in the leaves, peduncle, glumes and roots. Expression of GS genes in leaves was developmentally regulated, with both GS2 and GS1 assimilating or recycling ammonia in leaves during the period of grain development and filling. During leaf senescence the cytosolic isozymes, GS1 and GSr, were the predominant forms, suggesting major roles in assimilating ammonia during the critical phases of remobilisation of nitrogen to the grain. A preliminary analysis of three different wheat genotypes showed that the ratio of leaf GS2 protein to GS1 protein was variable. Use of this genetic variation should inform future efforts to modulate this enzyme for pre-breeding efforts to improve nitrogen use in wheat. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals
Loading next page...
 
/lp/springer_journal/gene-expression-cellular-localisation-and-function-of-glutamine-bdSRro61D0
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-008-9303-y
Publisher site
See Article on Publisher Site

Abstract

We present the first cloning and study of glutamine synthetase (GS) genes in wheat (Triticum aestivum L.). Based on sequence analysis, phylogenetic studies and mapping data, ten GS sequences were classified into four sub-families: GS2 (a, b and c), GS1 (a, b and c), GSr (1 and 2) and GSe (1 and 2). Phylogenetic analysis showed that the wheat GS sub-families together with the GS genes from other monocotyledonous species form four distinct clades. Immunolocalisation studies in leaves, stems and rachis in plants at flowering showed GS protein to be present in parenchyma, phloem companion and perifascicular sheath cells. In situ localisation confirmed that GS1 transcripts were present in the perifascicular sheath cells whilst those for GSr were confined to the vascular cells. Studies of the expression and protein profiles showed that all GS sub-families were differentially expressed in the leaves, peduncle, glumes and roots. Expression of GS genes in leaves was developmentally regulated, with both GS2 and GS1 assimilating or recycling ammonia in leaves during the period of grain development and filling. During leaf senescence the cytosolic isozymes, GS1 and GSr, were the predominant forms, suggesting major roles in assimilating ammonia during the critical phases of remobilisation of nitrogen to the grain. A preliminary analysis of three different wheat genotypes showed that the ratio of leaf GS2 protein to GS1 protein was variable. Use of this genetic variation should inform future efforts to modulate this enzyme for pre-breeding efforts to improve nitrogen use in wheat.

Journal

Plant Molecular BiologySpringer Journals

Published: Feb 21, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off