Gene activation in plastids by the CRE site-specific recombinase

Gene activation in plastids by the CRE site-specific recombinase We developed a novel system for gene activation in plastids that uses the CRE/loxP site-specific recombination system to create a translatable reading frame by excision of a blocking sequence. To test the system, we introduced an inactive gfp* gene into the tobacco plastid genome downstream of the selectable spectinomcyin resistance (aadA) marker gene. The aadA gene is the blocking sequence, and is flanked by directly oriented loxP sites for excision by the CRE. In the non-activated state, gfp* is transcribed from the aadA promoter, but the mRNA is not translated due to the lack of an AUG translation initiation codon. Green Fluorescent Protein (GFP) expression is activated by excision of the aadA coding segment to link up the gfp* coding region with the translation initiation codon of aadA. Tobacco plants that carry the inactive gfp* gene do not contain detectable levels of GFP. However, activation of gfp* resulted in GFP accumulation, proving the utility of CRE-induced protein expression in tobacco chloroplasts. The gene activation system described here will be useful to probe plastid gene function and for the production of recombinant proteins in chloroplasts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Gene activation in plastids by the CRE site-specific recombinase

Loading next page...
 
/lp/springer_journal/gene-activation-in-plastids-by-the-cre-site-specific-recombinase-q0TZbstl9D
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2006 by Springer Science+Business Media B.V.
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-006-0044-5
Publisher site
See Article on Publisher Site

Abstract

We developed a novel system for gene activation in plastids that uses the CRE/loxP site-specific recombination system to create a translatable reading frame by excision of a blocking sequence. To test the system, we introduced an inactive gfp* gene into the tobacco plastid genome downstream of the selectable spectinomcyin resistance (aadA) marker gene. The aadA gene is the blocking sequence, and is flanked by directly oriented loxP sites for excision by the CRE. In the non-activated state, gfp* is transcribed from the aadA promoter, but the mRNA is not translated due to the lack of an AUG translation initiation codon. Green Fluorescent Protein (GFP) expression is activated by excision of the aadA coding segment to link up the gfp* coding region with the translation initiation codon of aadA. Tobacco plants that carry the inactive gfp* gene do not contain detectable levels of GFP. However, activation of gfp* resulted in GFP accumulation, proving the utility of CRE-induced protein expression in tobacco chloroplasts. The gene activation system described here will be useful to probe plastid gene function and for the production of recombinant proteins in chloroplasts.

Journal

Plant Molecular BiologySpringer Journals

Published: Mar 10, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off