Gaussian Curvature as an Identifier of Shell Rigidity

Gaussian Curvature as an Identifier of Shell Rigidity In the paper we deal with shells with non-zero Gaussian curvature. We derive sharp Korn’s first (linear geometric rigidity estimate) and second inequalities on that kind of shell for zero or periodic Dirichlet, Neumann, and Robin type boundary conditions. We prove that if the Gaussian curvature is positive, then the optimal constant in the first Korn inequality scales like h, and if the Gaussian curvature is negative, then the Korn constant scales like h 4/3, where h is the thickness of the shell. These results have a classical flavour in continuum mechanics, in particular shell theory. The Korn first inequalities are the linear version of the famous geometric rigidity estimate by Friesecke et al. for plates in Arch Ration Mech Anal 180(2):183–236, 2006 (where they show that the Korn constant in the nonlinear Korn’s first inequality scales like h 2), extended to shells with nonzero curvature. We also recover the uniform Korn–Poincaré inequality proven for “boundary-less” shells by Lewicka and Müller in Annales de l’Institute Henri Poincare (C) Non Linear Anal 28(3):443–469, 2011 in the setting of our problem. The new estimates can also be applied to find the scaling law for the critical buckling load of the shell under in-plane loads as well as to derive energy scaling laws in the pre-buckled regime. The exponents 1 and 4/3 in the present work appear for the first time in any sharp geometric rigidity estimate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archive for Rational Mechanics and Analysis Springer Journals

Gaussian Curvature as an Identifier of Shell Rigidity

Loading next page...
 
/lp/springer_journal/gaussian-curvature-as-an-identifier-of-shell-rigidity-8055j2PQXH
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Physics; Classical Mechanics; Physics, general; Theoretical, Mathematical and Computational Physics; Complex Systems; Fluid- and Aerodynamics
ISSN
0003-9527
eISSN
1432-0673
D.O.I.
10.1007/s00205-017-1143-y
Publisher site
See Article on Publisher Site

Abstract

In the paper we deal with shells with non-zero Gaussian curvature. We derive sharp Korn’s first (linear geometric rigidity estimate) and second inequalities on that kind of shell for zero or periodic Dirichlet, Neumann, and Robin type boundary conditions. We prove that if the Gaussian curvature is positive, then the optimal constant in the first Korn inequality scales like h, and if the Gaussian curvature is negative, then the Korn constant scales like h 4/3, where h is the thickness of the shell. These results have a classical flavour in continuum mechanics, in particular shell theory. The Korn first inequalities are the linear version of the famous geometric rigidity estimate by Friesecke et al. for plates in Arch Ration Mech Anal 180(2):183–236, 2006 (where they show that the Korn constant in the nonlinear Korn’s first inequality scales like h 2), extended to shells with nonzero curvature. We also recover the uniform Korn–Poincaré inequality proven for “boundary-less” shells by Lewicka and Müller in Annales de l’Institute Henri Poincare (C) Non Linear Anal 28(3):443–469, 2011 in the setting of our problem. The new estimates can also be applied to find the scaling law for the critical buckling load of the shell under in-plane loads as well as to derive energy scaling laws in the pre-buckled regime. The exponents 1 and 4/3 in the present work appear for the first time in any sharp geometric rigidity estimate.

Journal

Archive for Rational Mechanics and AnalysisSpringer Journals

Published: Jul 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off