Gating Properties of a Sodium Channel with Three Arginines Substituted by Histidines in the Central Part of Voltage Sensor S4D4

Gating Properties of a Sodium Channel with Three Arginines Substituted by Histidines in the... In voltage-dependent sodium channels there is some functional specialization of the four different S4 voltage sensors with regard to the gating process. Whereas the voltage sensors of domains 1 to 3 control activation gating, the movement of the voltage sensor of domain 4 (S4D4) is known to be tightly coupled to sodium channel inactivation, and there is some experimental evidence that S4D4 also participates in activation gating. To further explore its putative multifunctional role in the gating process, we changed the central part of S4D4 in rat brain IIA (rBIIA) sodium channels by the simultaneous replacement of the third (R1632), fourth (R1635) and fifth (R1638) arginine by histidine (mutation R3/4/5H). As a result, the time course of current decay observed in R3/4/5H was about three times slower, if compared to wild type (WT). On the other hand, the recovery, as well as the voltage dependence of fast inactivation, remained largely unaffected by the mutation. This suggests that at physiological pH (7.5) the effective charge of the voltage sensor was not significantly changed by the amino-acid substitutions. The well-known impact of site-3 toxin (ATX-II) on the inactivation was drastically reduced in R3/4/5H, without changing the toxin affinity of the channel. The activation kinetics of WT and R3/4/5H studied at low temperature (8°C) were indistinguishable, while the inactivation time course of R3/4/5H was then clearly more slowed than in WT. These data suggest that the replacement of arginines by histidines in the central part of S4D4 clearly affects the movement of S4D4 without changing the activation kinetics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Gating Properties of a Sodium Channel with Three Arginines Substituted by Histidines in the Central Part of Voltage Sensor S4D4

Loading next page...
 
/lp/springer_journal/gating-properties-of-a-sodium-channel-with-three-arginines-substituted-MSRukUNM19
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-002-2004-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial