Gating Movements of Colicin A and Colicin Ia Are Different

Gating Movements of Colicin A and Colicin Ia Are Different Both colicin A and colicin Ia belong to a subfamily of the bacterial colicins that act by forming a voltage-dependent channel in the inner membrane of target bacteria. Both colicin A and Ia open at positive and close at negative potential, but only colicin A exhibits distinctly biphasic turnoff kinetics, implying the existence of two open states. Previous work has shown that Colicin Ia gating is associated with the translocation of a region representing 4 of its alpha helices across the membrane. Also, if its C-terminal, channel-forming domain is detached from the other domains, its N-terminal alpha helix can now also cross the membrane, causing the conductance to drop by a factor of about 6. Colicin A gating also involves the translocation of an internal domain, but we find that its translocated domain is somewhat smaller than that of Ia. Furthermore, while its isolated C-terminal domain can also undergo a transition to a smaller conductance, the conductance change is only about 15%, and the transition does not involve the translocation of the N-terminal alpha helix. Trapping the N-terminus on the cis side prevents neither this small conductance transition nor the biphasic turn-off. So, while the gating of both channels involves large, currently inexplicable conformational changes, these motions are qualitatively different in the two proteins, which may be a reflection of the dissimilar kinetics of closing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Gating Movements of Colicin A and Colicin Ia Are Different

Loading next page...
 
/lp/springer_journal/gating-movements-of-colicin-a-and-colicin-ia-are-different-mCZIumbU6I
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-004-0720-9
Publisher site
See Article on Publisher Site

Abstract

Both colicin A and colicin Ia belong to a subfamily of the bacterial colicins that act by forming a voltage-dependent channel in the inner membrane of target bacteria. Both colicin A and Ia open at positive and close at negative potential, but only colicin A exhibits distinctly biphasic turnoff kinetics, implying the existence of two open states. Previous work has shown that Colicin Ia gating is associated with the translocation of a region representing 4 of its alpha helices across the membrane. Also, if its C-terminal, channel-forming domain is detached from the other domains, its N-terminal alpha helix can now also cross the membrane, causing the conductance to drop by a factor of about 6. Colicin A gating also involves the translocation of an internal domain, but we find that its translocated domain is somewhat smaller than that of Ia. Furthermore, while its isolated C-terminal domain can also undergo a transition to a smaller conductance, the conductance change is only about 15%, and the transition does not involve the translocation of the N-terminal alpha helix. Trapping the N-terminus on the cis side prevents neither this small conductance transition nor the biphasic turn-off. So, while the gating of both channels involves large, currently inexplicable conformational changes, these motions are qualitatively different in the two proteins, which may be a reflection of the dissimilar kinetics of closing.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off