Gas-phase toluene LIF temperature imaging near surfaces at 10kHz

Gas-phase toluene LIF temperature imaging near surfaces at 10kHz Information on transient temperature distributions is important for the study of heat transfer and reacting flows, including combustion. Laser diagnostic methods have been developed for temperature imaging purposes but so far have largely been constrained to low temporal resolution measurements. Diode-pumped solid-state lasers and high frame rate CMOS cameras have enabled the development of a gas-phase temperature imaging method based on laser-induced fluorescence of toluene. Excitation of toluene at 266 nm results in temperature-dependent fluorescence emissions that were detected in two spectral regions, yielding a temperature-dependent signal ratio that was calibrated for the range of 100 to 600°C. Experiments were performed in a well-stabilized heated nitrogen jet, seeded with toluene. The precision of the diagnostics increases with decreasing temperature due to an overall increase in signal strength. The application of this technique to measure the transient temperature field at 10 kHz frame rates in the boundary layer of a hot gas jet impinging on a cooled metal plate is demonstrated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Gas-phase toluene LIF temperature imaging near surfaces at 10kHz

Loading next page...
 
/lp/springer_journal/gas-phase-toluene-lif-temperature-imaging-near-surfaces-at-10khz-4HzZQ4L7PQ
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-011-1137-8
Publisher site
See Article on Publisher Site

Abstract

Information on transient temperature distributions is important for the study of heat transfer and reacting flows, including combustion. Laser diagnostic methods have been developed for temperature imaging purposes but so far have largely been constrained to low temporal resolution measurements. Diode-pumped solid-state lasers and high frame rate CMOS cameras have enabled the development of a gas-phase temperature imaging method based on laser-induced fluorescence of toluene. Excitation of toluene at 266 nm results in temperature-dependent fluorescence emissions that were detected in two spectral regions, yielding a temperature-dependent signal ratio that was calibrated for the range of 100 to 600°C. Experiments were performed in a well-stabilized heated nitrogen jet, seeded with toluene. The precision of the diagnostics increases with decreasing temperature due to an overall increase in signal strength. The application of this technique to measure the transient temperature field at 10 kHz frame rates in the boundary layer of a hot gas jet impinging on a cooled metal plate is demonstrated.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 15, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off