Gas-phase etching of SiO2 layers in an HF/C2H5OH mixture

Gas-phase etching of SiO2 layers in an HF/C2H5OH mixture This paper describes a technique for dry etching SiO2 layers in MEMS technologies without the moving elements sticking. Etching the sacrificial SiO2 in anhydrous HF (hydrofluoric acid in the gas phase) allows avoiding the subsequent complex operations of cleaning and drying, which are mandatory in the case of liquid etching. Using the HF/C2H5OH anhydrous mixture under low pressures makes it possible to prevent water condensation, which is due to etching in HF vapor, and allows one to employ gas-phase etching in surface MEMS technologies. The mechanisms and physicochemical processes taking place when etching thermal SiO2 are discussed. The rate of etching thermal SiO2 films is investigated at temperatures ranging from 30 to 50°С and under chamber pressures ranging from 10 to 20 kPa. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Gas-phase etching of SiO2 layers in an HF/C2H5OH mixture

Loading next page...
 
/lp/springer_journal/gas-phase-etching-of-sio2-layers-in-an-hf-c2h5oh-mixture-5jNs2F0jOc
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S1063739717010097
Publisher site
See Article on Publisher Site

Abstract

This paper describes a technique for dry etching SiO2 layers in MEMS technologies without the moving elements sticking. Etching the sacrificial SiO2 in anhydrous HF (hydrofluoric acid in the gas phase) allows avoiding the subsequent complex operations of cleaning and drying, which are mandatory in the case of liquid etching. Using the HF/C2H5OH anhydrous mixture under low pressures makes it possible to prevent water condensation, which is due to etching in HF vapor, and allows one to employ gas-phase etching in surface MEMS technologies. The mechanisms and physicochemical processes taking place when etching thermal SiO2 are discussed. The rate of etching thermal SiO2 films is investigated at temperatures ranging from 30 to 50°С and under chamber pressures ranging from 10 to 20 kPa.

Journal

Russian MicroelectronicsSpringer Journals

Published: Mar 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off