Gap Junction Coupling and Apoptosis in GFSHR-17 Granulosa Cells

Gap Junction Coupling and Apoptosis in GFSHR-17 Granulosa Cells Recently, we found that intracellular washout of cGMP induces gap junction uncoupling and proposed a link between gap junction uncoupling and stimulation of apoptotic reactions in GFSHR-17 granulosa cells. In the present report we show that an inhibitor of guanylyl cyclase, ODQ, reduces gap junction coupling and promotes apoptotic reactions such as chromatin condensation and DNA strand breaks. To analyze whether gap junction uncoupling and induction of apoptotic reactions are related, the cells were treated with heptanol and 18β-GA, two known gap junction uncouplers. Gap junction coupling of GFSHR-17 cells could be restored if the incubation time with the gap junction uncouplers was less than 10 min. A prolonged incubation time irreversibly suppressed gap junction coupling and caused chromatin condensation as well as DNA degradation. The promotion of apoptotic reactions by heptanol or 18β-GA was not observed in cells with low gap junction coupling like HeLa cells, indicating that the observed genotoxic reactions are not caused by unspecific effects of gap junction uncouplers. Additionally, it was observed that heptanol or 18β-GA did not induce a sustained rise of [Ca2+]i. The effects of gap junction uncouplers could not be suppressed by the presence of 8-Br-cGMP. It is discussed that irreversible gap junction uncoupling can be mediated by cGMP-dependent as well as cGMP-independent pathways and in turn could lead to stimulation of apoptotic reactions in granulosa cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Gap Junction Coupling and Apoptosis in GFSHR-17 Granulosa Cells

Loading next page...
 
/lp/springer_journal/gap-junction-coupling-and-apoptosis-in-gfshr-17-granulosa-cells-tL9sWiClKh
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-005-0756-5
Publisher site
See Article on Publisher Site

Abstract

Recently, we found that intracellular washout of cGMP induces gap junction uncoupling and proposed a link between gap junction uncoupling and stimulation of apoptotic reactions in GFSHR-17 granulosa cells. In the present report we show that an inhibitor of guanylyl cyclase, ODQ, reduces gap junction coupling and promotes apoptotic reactions such as chromatin condensation and DNA strand breaks. To analyze whether gap junction uncoupling and induction of apoptotic reactions are related, the cells were treated with heptanol and 18β-GA, two known gap junction uncouplers. Gap junction coupling of GFSHR-17 cells could be restored if the incubation time with the gap junction uncouplers was less than 10 min. A prolonged incubation time irreversibly suppressed gap junction coupling and caused chromatin condensation as well as DNA degradation. The promotion of apoptotic reactions by heptanol or 18β-GA was not observed in cells with low gap junction coupling like HeLa cells, indicating that the observed genotoxic reactions are not caused by unspecific effects of gap junction uncouplers. Additionally, it was observed that heptanol or 18β-GA did not induce a sustained rise of [Ca2+]i. The effects of gap junction uncouplers could not be suppressed by the presence of 8-Br-cGMP. It is discussed that irreversible gap junction uncoupling can be mediated by cGMP-dependent as well as cGMP-independent pathways and in turn could lead to stimulation of apoptotic reactions in granulosa cells.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off